SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;lar1:(hkr);pers:(Eriksson Urban)"

Sökning: LAR1:uu > Högskolan Kristianstad > Eriksson Urban

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Airey, John, 1963-, et al. (författare)
  • On the Disciplinary Affordances of Semiotic Resources
  • 2014
  • Ingår i: Book of Abstracts. ; , s. 54-55, s. 54-55
  • Konferensbidrag (refereegranskat)abstract
    • In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.
  •  
2.
  • Airey, John, 1963-, et al. (författare)
  • Unpacking the Hertzsprung-Russell Diagram : A Social Semiotic Analysis of the Disciplinary and Pedagogical Affordances of a Central Resource in Astronomy
  • 2019
  • Ingår i: Designs for Learning. - Stockholm : Stockholm University Press. - 1654-7608 .- 2001-7480. ; 11:1, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we are interested in the relationship between disciplinary knowledge and its representation. We carry out a social semiotic analysis of a central tool used in astronomy—the Hertzsprung-Russell (H-R) diagram—in order to highlight its disciplinary and pedagogical affordances. The H-R diagram that we know today combines many layers of astronomical knowledge, whilst still retaining some rather quirky traces of its historical roots. Our analysis shows how these ‘layers of knowledge’ and ‘historical anomalies’ have resulted in a number of counterintuitive aspects within the diagram that have successively lowered its pedagogical affordance. We claim that these counterintuitive aspects give rise to potential barriers to student disciplinary learning. Using our analysis as a case study, we generalise our findings, suggesting four types of barrier to understanding that are potentially at work when students meet disciplinary-specific semiotic resources for the first time. We finish the paper by making some general suggestions about the wider use of our analysis method and ways of dealing with any barriers to learning identified. In the specific case of the H-R diagram, we suggest that lecturers should explicitly tease out its disciplinary affordances by the use of ‘unpacked’ resources that have a higher pedagogical affordance. 
  •  
3.
  • Airey, John, 1963-, et al. (författare)
  • What do you see here? : Using an analysis of the Hertzsprung-Russell diagram in astronomy to create a survey of disciplinary discernment.
  • 2014
  • Ingår i: The first Conference of the International Association for Cognitive Semiotics, Lund, Sweden, 25-27 Sept 2014. ; , s. 52-53
  • Konferensbidrag (refereegranskat)abstract
    • Becoming part of a discipline involves learning to interpret and use a range of disciplinary-specific semiotic resources (Airey, 2009). These resources have been developed and assigned particular specialist meanings over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors in order to reconcile them with subsequent empirical and theoretical advances. As a consequence, many of the semiotic resources used in the sciences today still retain some (potentially confusing) traces of their historical roots. However, it has been repeatedly shown that university lecturers underestimate the challenges such disciplinary specific semiotic resources may present to undergraduates (Northedge, 2002; Tobias, 1986).In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. First, we audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline. Using the results of our analysis we then created an online questionnaire to probe what is discerned (Eriksson, Linder, Airey, & Redfors, in press) with respect to each of these aspects by astronomers and physicists ranging from first year undergraduates to university professors.Our findings suggest that some of the issues we highlight in our analysis may, in fact, be contributors to the alternative conceptions of undergraduate students and we therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.
  •  
4.
  • Eriksson, Urban, et al. (författare)
  • Introducing the anatomy of disciplinary discernment : an example from astronomy
  • 2014
  • Ingår i: European Journal of Science and Mathematics Education. - : Eastern Mediterranean University. - 2301-251X. ; 2:3, s. 167-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Education is increasingly being framed by a competence mindset; the value of knowledge lies much more in competence performativity and innovation than in simply knowing. Reaching such competency in areas such as astronomy and physics has long been known to be challenging. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. Thus, what underpins the characteristics of the disciplinary trajectory to competence becomes an important educational consideration. In this article we report on a study involving what students and lecturers discern from the same disciplinary semiotic resource. We use this to propose an Anatomy of Disciplinary Discernment (ADD), a hierarchy of what is focused on and how it is interpreted in an appropriate, disciplinary manner, as an overarching fundamental aspect of disciplinary learning. Students and lecturers in astronomy and physics were asked to describe what they could discern from a video simulation of travel through our Galaxy and beyond. In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic interpretive study approach. The analysis resulted in the formulation of five qualitatively different categories of discernment; the ADD, reflecting a view of participants’ competence levels. The ADD reveals four increasing levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. This facilitates the identification of a clear relationship between educational level and the level of disciplinary discernment. The analytical outcomes of the study suggest how teachers of science, after using the ADD to assess the students disciplinary knowledge, may attain new insights into how to create more effective learning environments by explicitly crafting their teaching to support the crossing of boundaries in the ADD model.  
  •  
5.
  • Eriksson, Urban, et al. (författare)
  • Limits of ultra-high-precision optical astrometry : stellar surface structures
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 476:3, s. 1389-1400
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. To investigate the astrometric effects of stellar surface structures as a practical limitation to ultra-high-precision astrometry (e.g. in the context of exoplanet searches) and to quantify the expected effects in different regions of the HR-diagram. Methods. Stellar surface structures (spots, plages, granulation, non-radial oscillations) are likely to produce fluctuations in the integrated flux and radial velocity of the star, as well as a variation of the observed photocentre, i.e. astrometric jitter. We use theoretical considerations supported by Monte Carlo simulations (using a starspot model) to derive statistical relations between the corresponding astrometric, photometric, and radial velocity effects. Based on these relations, the more easily observed photometric and radial velocity variations can be used to predict the expected size of the astrometric jitter. Also the third moment of the brightness distribution, interferometrically observable as closure phase, contains information about the astrometric jitter. Results. For most stellar types the astrometric jitter due to stellar surface structures is expected to be of the order of 10 micro-AU or greater. This is more than the astrometric displacement typically caused by an Earth-size exoplanet in the habitable zone, which is about 1-4 micro-AU for long-lived main-sequence stars. Only for stars with extremely low photometric variability (< 0.5 mmag) and low magnetic activity, comparable to that of the Sun, will the astrometric jitter be of the order of 1 micro-AU, sufficient to allow the astrometric detection of an Earth-sized planet in the habitable zone. While stellar surface structure may thus seriously impair the astrometric detection of small exoplanets, it has in general a negligible impact on the detection of large (Jupiter-size) planets and on the determination of stellar parallax and proper motion. From the starspot model we also conclude that the commonly used spot filling factor is not the most relevant parameter for quantifying the spottiness in terms of the resulting astrometric, photometric and radial velocity variations.
  •  
6.
  • Eriksson, Urban (författare)
  • Reading the Sky : From Starspots to Spotting Stars
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis encompasses two research fields in astronomy: astrometry and astronomy education and they are discussed in two parts. These parts represent two sides of a coin; astrometry, which is about constructing 3D representations of the Universe, and AER, where for this thesis, the goal is to investigate university students’ and lecturers’ disciplinary discernment vis-à-vis the structure of the Universe and extrapolating three-dimensionality.Part I presents an investigation of stellar surface structures influence on ultra-high-precision astrometry. The expected effects in different regions of the HR-diagram were quantified. I also investigated the astrometric effect of exoplanets, since astrometric detection will become possible with projects such as Gaia. Stellar surface structures produce small brightness variations, influencing integrated properties such as the total flux, radial velocity and photocenter position. These properties were modelled and statistical relations between the variations of the different properties were derived. From the models it is clear that for most stellar types the astrometric jitter due to stellar surface structures is expected to be of order 10 μAU or greater. This is more than the astrometric displacement typically caused by an Earth-sized exoplanet in the habitable zone, which is about 1–4 μAU, making astrometric detection difficult.Part II presents an investigation of disciplinary discernment at the university level. Astronomy education is a particularly challenging experience for students because discernment of the ‘real’ Universe is problematic, making interpretation of the many disciplinary-specific representations used an important educational issue. The ability to ‘fluently’ discern the disciplinary affordances of these representations becomes crucial for the effective learning of astronomy. To understand the Universe I conclude that specific experiences are called. Simulations could offer these experiences, where parallax motion is a crucial component. In a qualitative study, I have analysed students’ and lecturers’ discernment while watching a simulation video, and found hierarchies that characterize the discernment in terms of three-dimensionality extrapolation and an Anatomy of Disciplinary Discernment. I combined these to define a new construct: Reading the Sky. I conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this in astronomy education.
  •  
7.
  • Eriksson, Urban, et al. (författare)
  • Tell me what you see : Differences in what is discerned when professors and students view the same disciplinary semiotic resource
  • 2014
  • Ingår i: The 5th international 360° conference: Encompassing the Multimodality of Knowledge, May 8-10 2014, Aarhus.
  • Konferensbidrag (refereegranskat)abstract
    • Traditionally, astronomy and physics have been viewed as difficult subjects to master. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. What characterises a disciplinary insider’s discernment of phenomena in astronomy and how does it compare to the views of newcomers to the field? In this paper we report on a study into what students and professors discern (cf. Eriksson et al, in press) from the same disciplinary semiotic resource and use this to propose an Anatomy of Disciplinary Discernment (ADD) as an overarching characterization of disciplinary learning.Students and professors in astronomy and physics were asked to describe what they could discern from a simulation video of travel through our Galaxy and beyond (Tully, 2012). In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic, constant comparison approach (Seebohm, 2004; Strauss, 1987). Analysis culminated in the formulation of five hierarchically arranged, qualitatively different categories of discernment. This ADD modelling of the data consists of one non-disciplinary category and four levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. Our analysis demonstrates a clear relationship between educational level and the level of disciplinary discernment.The analytic outcomes of the study suggest that teachers may create more effective learning environments by explicitly crafting their teaching to support the discernment of various aspects of disciplinary semiotic resources in order to facilitate the crossing of boundaries in the ADD model.
  •  
8.
  • Eriksson, Urban, et al. (författare)
  • Watching the sky : new realizations, new meanings, and surprizing aspects in university level astronomy
  • 2011
  • Ingår i: E-Book Proceedings of the ESERA 2011 Conference. - Lyon, France : European Science Education Research Association. - 9789963700448 ; , s. 57-63, s. 57-63
  • Konferensbidrag (refereegranskat)abstract
    • Learning astronomy is challenging at all levels due to the highly specialized form of communication used to share knowledge. When taking astronomy courses at different levels at university, learners are exposed to a variety of representations that are intended to help them learn about the structure and complexity of the Universe. However, not much is known about the reflective awareness that these representations evoke. Using a simulation video that provides a vivid virtual journey through our Milky Way galaxy, the nature of this awareness is captured and categorised for an array of learners (benchmark by results obtained for experts). The results illustrate how the number and nature of new things grounded in dimensionality, scale, time and perspective reflective awareness can too easily be taken for granted by both teachers and learners.
  •  
9.
  • Eriksson, Urban, et al. (författare)
  • What do teachers of astronomy need to think about?
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • Learning astronomy has exciting prospects for many students; learning about the stars in thesky, the planets, galaxies, etc., is often very inspiring and sets the mind on the really bigaspects of astronomy as a science; the Universe. At the same time, learning astronomy can bea challenging endeavor for many students. One of the most difficult things to come tounderstand is how big the Universe is. Despite seeming trivial, size and distances, togetherwith the three-dimensional (3D) structure of the Universe, probably present some of thebiggest challenges in the teaching and learning of astronomy(Eriksson, Linder, Airey, &Redfors, in preparation; Lelliott & Rollnick, 2010). This is the starting point for everyastronomy educator. From here, an educationally critical question to ask is: how can we bestapproach the teaching of astronomy to optimize the potential for our students attaining aholistic understanding about the nature of the Universe?Resent research indicates that to develop students’ understanding about the structure of theUniverse, computer generated 3D simulations can be used to provide the students with anexperience that other representations cannot easily provide (Eriksson et al., in preparation;Joseph, 2011). These simulations offer disciplinary affordance* through the generation ofmotion parallax for the viewer. Using this background we will present the results of a recentinvestigation that we completed looking at what students’ discern (notice with meaning)about the multidimensionality of the Universe. Implications for astronomy education will bediscussed and exemplified.*[T]he inherent potential of [a] representation to provide access to disciplinary knowledge(Fredlund, Airey, & Linder, 2012, p. 658)Eriksson, U., Linder, C., Airey, J., & Redfors, A. (in preparation). Who needs 3D when theUniverse is flat?Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: anillustrative example from students sharing knowledge about refraction. EuropeanJournal of Physics, 33(3), 657.Joseph, N. M. (2011). Stereoscopic Visualization as a Tool For Learning AstronomyConcepts. (Master of Science), Purdue University, Purdue University Press Journals.Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research1974--2008. International Journal of Science Education, 32(13), 1771–1799
  •  
10.
  • Eriksson, Urban, et al. (författare)
  • Who needs 3D when the Universe is flat?
  • 2014
  • Ingår i: Science Education. - : Wiley. - 0036-8326 .- 1098-237X. ; 98:3, s. 412-442
  • Tidskriftsartikel (refereegranskat)abstract
    • An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D) simulations in astronomy education, but they have neither addressed what students discern nor the nature of that discernment. A Web-based questionnaire was designed using links to video clips drawn from a simulation video of travel through our galaxy and beyond. The questionnaire was completed by 137 participants from nine countries across a broad span of astronomy education. The descriptions provided by the participants were analyzed using hermeneutics in combination with a constant comparative approach to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that the ability to extrapolate three-dimensionality calls for the creation of meaningful motion parallax experiences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy