SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;lar1:(liu);pers:(Rosén Johanna)"

Sökning: LAR1:uu > Linköpings universitet > Rosén Johanna

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anders, Andre, et al. (författare)
  • High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition
  • 2010
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 518:12, s. 3313-3319
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.
  •  
2.
  • Azina, Clio, et al. (författare)
  • Yttrium incorporation in Cr2AlC : On the metastable phase formation and decomposition of (Cr,Y)(2)AlC MAX phase thin films
  • 2023
  • Ingår i: Journal of The American Ceramic Society. - : John Wiley & Sons. - 0002-7820 .- 1551-2916. ; 106:4, s. 2652-2665
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we report on the synthesis of a metastable (Cr,Y)(2)AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. However, direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room-temperature depositions, followed by annealing to 760 degrees C led to the formation of phase pure (Cr,Y)(2)AlC by diffusion. Higher annealing temperatures caused a decomposition of the metastable phase into Cr2AlC, Y5Al3, and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by similar to 200 degrees C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)(2)AlC and its decomposition are in excellent agreement with the experimental findings.
  •  
3.
  • Bakhit, Babak, 1983-, et al. (författare)
  • Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films
  • 2021
  • Ingår i: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 191, s. 120-125
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently showed that sputter-deposited Zr1-xTaxBy thin films have hexagonal AlB2-type columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. As-deposited layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we study the mechanical properties of ZrB2.4, Zr0.8Ta0.2B1.8, and Zr0.7Ta0.3B1.5 films annealed in Ar atmosphere as a function of annealing temperature Ta up to 1200 °C. In-situ and ex-situ nanoindentation analyses reveal that all films undergo age hardening up to Ta = 800 °C, with the highest hardness achieved for Zr0.8Ta0.2B1.8 (45.5±1.0 GPa). The age hardening, which occurs without any phase separation or decomposition, can be explained by point-defect recovery that enhances chemical bond density. Although hardness decreases at Ta > 800 °C due mainly to recrystallization, column coarsening, and planar defect annihilation, all layers show hardness values above 34 GPa over the entire Ta range.
  •  
4.
  • Bakhit, Babak, 1983-, et al. (författare)
  • Systematic compositional analysis of sputter-deposited boron-containing thin films
  • 2021
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 39:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Boron-containing materials exhibit a unique combination of ceramic and metallic properties that are sensitively dependent on their given chemical bonding and elemental compositions. However, determining the composition, let alone bonding, with sufficient accuracy is cumbersome with respect to boron, being a light element that bonds in various coordinations. Here, we report on the comprehensive compositional analysis of transition-metal diboride (TMBx) thin films (TM = Ti, Zr, and Hf) by energy-dispersive x-ray spectroscopy (EDX), x-ray photoelectron spectroscopy (XPS), time-of-flight elastic recoil detection analysis (ToF-ERDA), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). The films are grown on Si and C substrates by dc magnetron sputtering from stoichiometric TMB2 targets and have hexagonal AlB2-type columnar structures. EDX considerably overestimates B/TM ratios, x, compared to the other techniques, particularly for ZrBx. The B concentrations obtained by XPS strongly depend on the energy of Ar+ ions used for removing surface oxides and contaminants prior to analyses and are more reliable for 0.5 keV Ar+. ToF-ERDA, RBS, and NRA yield consistent compositions in TiBx. They also prove TiBx and ZrBx films to be homogeneous with comparable B/TM ratios for each film. However, ToF-ERDA, employing a 36-MeV 127I8+ beam, exhibits challenges in depth resolution and quantification of HfBx due to plural and multiple scattering and associated energy loss straggling effects. Compared to ToF-ERDA, RBS (for the film grown on C substrates) and NRA provide more reliable B/Hf ratios. Overall, a combination of methods is recommended for accurately pinpointing the compositions of borides that contain heavy transition metals.
  •  
5.
  • Dahlqvist, Martin, et al. (författare)
  • Influence of boron vacancies on phase stability, bonding and structure of MB2 (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure
  • 2015
  • Ingår i: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 27:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal diborides in hexagonal AlB2 type structure typically form stable MB2 phases for group IV elements (M = Ti, Zr, Hf). For group V (M = V, Nb, Ta) and group VI (M = Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB2 and its influence on the phase stability and the structure for TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, CrB2, MoB2, and WB2 using first-principles calculations. Selected phases are also analyzed with respect to electronic and bonding properties. We identify trends showing that MB2 with M from group V and IV are stabilized when introducing B-vacancies, consistent with a decrease in the number of states at the Fermi level and by strengthening of the B-M interaction. The stabilization upon vacancy formation also increases when going from M in period 4 to period 6. For TiB2, ZrB2, and HfB2, introduction of B-vacancies have a destabilizing effect due to occupation of B-B antibonding orbitals close to the Fermi level and an increase in states at the Fermi level.
  •  
6.
  • Dahlqvist, Martin, et al. (författare)
  • Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC
  • 2016
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 93:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherently layered magnetic materials, such as magnetic M(n+1)AX(n) (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition M(n+1)AX(n) consists of M(n+1)AX(n) blocks separated by atomically thin A-layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic Mn2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of Mn2GaC MAX phases in future magnetoelectric and magnetocaloric applications.
  •  
7.
  • Eklund, Per, et al. (författare)
  • Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach
  • 2012
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 109:3, s. 035502-
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of similar to 3.24 angstrom and 12.82 angstrom.
  •  
8.
  •  
9.
  • Etman, Ahmed, et al. (författare)
  • Fabrication of Mo1.33CTz (MXene)-cellulose freestanding electrodes for supercapacitor applications
  • 2021
  • Ingår i: Materials Advances. - : ROYAL SOC CHEMISTRY. - 2633-5409. ; 2:2, s. 743-753
  • Tidskriftsartikel (refereegranskat)abstract
    • MXenes are two-dimensional (2D) transition metal carbides/nitrides with high potential for energy storage devices owing to their high flexibility, conductivity and specific capacitance. However, MXene films tend to suffer from diffusion limitation of ions within the film, and thus their thickness is commonly reduced to a few micrometers (mass loadings <1 mg cm(-2)). Herein, a straightforward one-step protocol for synthesizing freestanding Mo1.33CTz-cellulose composite electrodes with high MXene loading is reported. By varying the amount of the cellulose content, a high gravimetric capacitance (up to 440 F g(-1) for 45 wt% cellulose content, <similar to>5.9 mu m thick film) and volumetric capacitance (up to 1178 F cm(-3) for 5 wt% cellulose content, similar to 4.8 mu m thick film) is achieved. These capacitance values are superior to those for the pristine MXene film, of a similar MXene loading (1.56 mg cm(-2), similar to 4.2 mu m thick film), delivering values of about 272 F g(-1) and 1032 F cm(-3). Interestingly, the Mo1.33CTz-cellulose composite electrodes display an outstanding capacitance retention (similar to 95%) after 30000 cycles, which is better than those reported for other Mo1.33CTz-based electrodes. Furthermore, the presence of cellulose inside a thick composite electrode (similar to 26 mu m, MXene loading 5.2 mg cm(-2)) offers a novel approach for opening the structure during electrochemical cycling, with resulting high areal capacitance of about 1.4 F cm(-2). A symmetric device of Mo1.33CTz-cellulose electrodes featured a long lifespan of about 35000 cycles and delivered a device capacitance up to 95 F g(-1). The superior performance of the Mo1.33CTz-cellulose electrodes in terms of high gravimetric, volumetric, and areal capacitances, long lifespan, and promising rate capability, paves the way for their use in energy storage devices.
  •  
10.
  • Etman, Ahmed, 1986-, et al. (författare)
  • Mixed MXenes : Mo1.33CTz and Ti3C2Tz freestanding composite films for energy storage
  • 2021
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 88
  • Tidskriftsartikel (refereegranskat)abstract
    • MXenes are a class of 2D materials with outstanding properties, including high electronic conductivity, hydrophilicity, and high specific capacitance. In particular, Mo1.33CTz MXene has a high specific capacitance, whereas films of Ti3C2Tz MXene possess high flexibility and high electronic conductivity. The fabrication of composite materials based on these two MXenes is therefore motivated, taking advantage of combining their good properties. In this article, we introduce a one-step approach to prepare composite MXene films using pristine Mo1.33CTz and Ti3C2Tz MXenes. The composite films display superior flexibility and electronic conductivity, as well as high capacitance, up to 1380 F cm−3 (460 F g−1), in 1 M H2SO4. A capacitance retention of 96% is obtained after 17,000 cycles. In addition, the capacitance retentions are about 56% and 25% at scan rates of 200 mV s−1 and 1000 mV s−1, respectively. A significant rise in the capacitance at high rates, 875 F cm−3 (282 F g−1) at a current density of 20 A g−1, is achieved by using a 3 M H2SO4 solution. The use of composite MXene as negative electrodes for asymmetric supercapacitor devices, as well as lithium-ion batteries, is also discussed. This work suggests new pathways for the use of MXene composites with double transition metals (Mo and Ti) in energy storage devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy