SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;lar1:(ltu);pers:(Martinsson Olof)"

Sökning: LAR1:uu > Luleå tekniska universitet > Martinsson Olof

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alakangas, Lena, et al. (författare)
  • Norrbottens malm- och mineralresurs och dess potentiella betydelse för innovation, samhälle och miljö
  • 2014
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Gruvindustrins betydelse för samhällsutveckling och infrastruktur i Sverige och inte minst i Norrbottens län är mycket stor. De geologiska förutsättningarna att hitta nya brytvärda förekomster i Norrbotten är goda. Länet är tillsammans med Västerbotten en av Europas viktigaste regioner för utvinning av metaller. Det syns också i den nyligen framtagna regionala mineralstrategin för Norrbotten och Västerbotten. Visionen för den regionala mineralstrategin: ”Genom långsiktigt hållbart nyttjande av Norrbottens och Västerbottens läns mineralresurser har ytterligare tillväxt skapats i regionen och hela Sverige. Vi har utvecklat och stärkt vår ställning som ledande gruv- och mineralnation.”Eftersom framtidspotentialen för gruvnäringen är mycket god men okunnigheten hos både allmänhet och beslutsfattare om näringens betydelse för innovation och samhällsutveckling är stor, kopplat med en utbredd oro för miljöpåverkan, måste dessa viktiga framtidsfrågor belysas. Med finansiering från Länsstyrelsen i Norrbotten bedrevs därför under första hälften av 2014 en förstudie som syftade till att sammanfatta kunskapsläget om framtidens gruvindustri i Norrbotten. Resultaten av förstudien redovisas i den här rapporten. En viktig slutsats är att det under nästa strukturfondsperiod (med start 2015) behövs ett framtidsinriktat forskningsprogram för att belysa de möjligheter som finns. Denna förstudie utgör grund för en kommande ansökan till strukturfonderna. Kompetensen som finns vid Luleå tekniska universitet, Sveriges centrum för gruvrelaterad forskning och utbildning, bör användas för att studera troliga framtidsmöjligheter och hur de ska kunna användas för att få en så positiv utveckling som möjligt för länet. Projektet bör innehålla följande tre huvudinriktningar, som naturligtvis hör ihop:Vilka malm- och mineralresurser finns det potential för i Norrbotten, och vilka kommer sannolikt att exploateras i framtiden?Vad kommer den exploateringen att ha för betydelse för innovation och samhällsutveckling?Vad kommer den exploateringen att få för miljöeffekter och hur ska man göra för att minska miljöbelastningen?En annan slutsats är att nedlagda gruvområden inte måste ses som förstörd natur. Betydande mervärden som gruvturism skulle kunna skapas om vilja, kreativitet och beslutsamhet finns. Detta är ett givet utvecklingsområde där småföretag och entreprenörer kan göra stor insats om de politiska och myndighetsmässiga förutsättningarna finns. Dessa aspekter skulle också kunna belysas i det föreslagna forskningsprogrammet eller i ett eget projekt.
  •  
3.
  •  
4.
  • Billström, Kjell, et al. (författare)
  • IOCG and related mineral deposits of the northern Fennoscandian Shield
  • 2011
  • Ingår i: Hydrothermal iron oxide copper-gold & related topics. - Adelaide : PGC Publishing. ; , s. 381-414
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The northernmost Fennoscandian shield comprises Archaean and Palaeoproterozoic rocks. Unlike most other shield areas, economic mineral deposits are largely restricted to its Palaeoproterozoic parts. The latter are characterised by intracratonic basin evolution between ca. 2.5 and 2.0 Ga, involving recurrent mantle hotspot activity with numerous layered intrusions, komatiite and picrite eruptions, but no signs of accretionary phases or formation of major new felsic crust. Accretion and continent-continent collision followed from ca. 1.9 to 1.8 Ga, during the Svecofennian orogeny. A range of mineralisation styles are hosted by extensive ca. 2.5 to 2.0 Ga greenstone belts and younger, subduction-related 1.9 to 1.8 Ga Svecofennian intrusive and extrusive settings. These mineralisation styles partially overlap, and individual deposits may not readily be placed into genetic classification schemes. A provisional grouping of observed mineralisation styles comprises (1) stratiform-stratabound sulphide, (2) apatite-iron, (3) skarn-related iron and BIF, and (4) epigenetic(±syngenetic?) Au and Cu-Au deposits. The descriptive section of this paper also highlights features that may relate to orogenic-gold, IOCG and 'atypical metal association' categories of mineralisation. The assumption made is that the deposition of a diverse range of ore deposits was made possible by a long and complex geological evolution. This involved an initial (sowing) stage where iron, and to some extent copper and gold, were concentrated during 2.3 to 2.1 Ga (Karelian) rock-forming processes. Following this, ore elements were mobilised during two younger (Svecofennian) stages at 1.92 to 1.87 and 1.85 to 1.79 Ga, respectively. The latter were triggered by metamorphic and magmatic episodes, and fluids liberated during these stages precipitated IOCG and related deposits when fluids met structural and chemical traps in suitable host rocks. Ore fluids are generally saline, and their development probably involved incorporation of evaporates and, at least locally, also felsic magmatism may have played a role. Skarn-related mineralisation, hosted by ca. 2.1 Ga greenstones, occurs both as a BIF type in Sweden (formed at around 2.1 Ga), and as a gold-copper enriched variety (the result of Svecofennian epigenetic processes) in the Kolari region of Finland. The huge Kiirunavaara deposit is the type example of apatite iron ores, and is here considered to have formed from a magma at ca. 1.88 Ga, although it also has features best explained by a magmatic-hydrothermal overprint. A younger, less prominent, stage of apatite iron ore formation took place at approximately 1.78 Ga. Epigenetic gold and copper-gold deposits are particularly hard to classify as these show mixed ore characteristics, and to some extent this is likely to be due to multiple mineralisation stages (cf. the huge, low grade Aitik deposit in Sweden which is interpreted to be a hybrid porphyry-IOCG-type of ore). Structurally controlled, orogenic-gold mineralisation is common in the Central Lapland greenstone belt, although there are also gold deposits with enhanced contents of e.g., copper, cobalt and uranium (e.g., at Saatopoora). The latter, sometimes referred to as being of an 'atypical metal association' type, could potentially also include syngenetic mineralisation (e.g., at Juomasou). The range of epigenetic (±syngenetic) gold and copper-gold deposits could possibly be related to a vague east-west trend defined by gold-rich deposits in the east (Finland), followed by IOCG (copper±gold) and more iron-dominant ore types near the Finnish-Swedish border and further west into Sweden.
  •  
5.
  • Martinsson, Olof, et al. (författare)
  • Iron oxide-Cu-Au deposits in the northern part of the Fennoscandian shield
  • 2008
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The northern part of the Fennoscandian Shield, which formed during repeated extensional and compressional events at 3.1-1.8 Ga, is an ore province characterized by regionally developed albite and scapolite alteration and the occurrence of world class Fe-oxide (Kiirunavaara) and Cu-Au deposits (Aitik). It host several styles of Fe-oxide-Cu-Au deposits, including skarn and apatite-iron style deposits, many of them with features that also warrant classification as iron oxide-copper-gold (IOCG) deposits.The apatite-iron ores are economically most important with a total production of c. 1900 Mt from 10 mines during the last 100 years and with a total pre-mining resource of c. 4100 Mt. In these deposits, the Fe and P content vary between 30-70 % and 0.05-5 %, respectively. The ore minerals magnetite and hematite occur in lenses or as breccia infill. The ores are usually enriched in LREE, sulphides are rare but subeconomic amounts of Cu may occur.Skarn-like iron occurrences consisting of magnetite and Mg and Ca-Mg silicates have been less important with c. 20 Mt mined from 6 deposits and a pre-mining resource of 760 Mt. Most of them occur as conformable lenses with a banded internal structure. Pyrite, pyrrhotite and minor chalcopyrite are commonly present disseminated or as veinlets. Typical grades are 30-55% Fe, 0.2-3.5 % S, 0.05-0.3% Cu, 0.005-1g/t Au and 0.02-0.2% P. A few of the deposits are also enriched in LREE. Epigenetic Cu±Au occurrences include the porphyry-style giant Aitik deposit with a pre-mining resource of 2000 Mt at 0.3% Cu and 0.2 g/t Au and a total production of 465 Mt. Other deposits vary in style from disseminated to breccia infill or veins. Chalcopyrite is the most important ore mineral but bornite, pyrite, pyrrhotite, magnetite, molybdenite and native gold may occur in varying amounts. The skarn-like ores occur in 2.1Ga Karelian greenstones in association to carbonate rocks, BIF and graphite schist. The apatite iron ores are hosted by 1.9 Ga Svecofennian intermediate to felsic porphyries. The epigenetic Cu±Au deposits occur in both Karelian and Svecofennian volcanic and sedimentary rocks and 1.9 Ga intrusive rocks. The two last type of deposits show similar alteration styles including albite, K-feldspar, biotite, scapolite, carbonate, amphibole and tourmaline, whereas the skarn-like deposits are associated with diopside, amphibole, scapolite and biotite alteration.Deposit studies and geochronological data reveal a multiphase origin of the Fe oxide and Cu±Au occurrences with multiple sources of the ore fluids and peaks of mineralization at c. 1.88 and 1.77 Ga. These events are temporally related to major orogenic stages in the evolution of the Fennoscandian Shield. This implies that mineralization formed in different tectonic settings, and with different magmatic associations. Thus, the IOCG deposits are not uniform in origin, which may well explain their diverse features and also makes a simple genetic model for them dubious.
  •  
6.
  •  
7.
  • Martinsson, Olof, et al. (författare)
  • Metallogeny of the Northern Norrbotten Ore Province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits
  • 2016
  • Ingår i: Ore Geology Reviews. - : Elsevier BV. - 0169-1368 .- 1872-7360. ; 78, s. 447-492
  • Forskningsöversikt (refereegranskat)abstract
    • The Northern Norrbotten Ore Province in northernmost Sweden includes the type localities for Kiruna-type apatite iron deposits and has been the focus for intense exploration and research related to Fe oxide-Cu-Au mineralisation during the last decades. Several different types of Fe-oxide and Cu-Au +/- Fe oxide mineralisation occur in the region and include: stratiform Cu +/- Zn +/- Pb +/- Fe oxide type, iron formations (including BIF's), Kiruna-type apatite iron ore, and epigenetic Cu +/- Au +/- Fe oxide type which may be further subdivided into different styles of mineralisation, some of them with typical IOCG (Iron Oxide-Copper-Gold) characteristics. Generally, the formation of Fe oxide +/- Cu +/- Au mineralisation is directly or indirectly dated'between-2.1 and 1.75 Ga, thus spanning about 350 m.y. of geological evolution. The current paper will present in more detail the characteristics of certain key deposits, and aims to put the global concepts of Fe-oxide Cu-Au mineralisation into a regional context. The focus will be on iron deposits and various types of deposits containing Fe-oxides and Cu-sulphides in different proportions which generally have some characteristics in common with the IOCG style. In particular, ore fluid characteristics (magmatic versus non magmatic) and new geochronological data are used to link the ore-forming processes with the overall crustal evolution to generate a metallogenetic model. Rift bounded shallow marine basins developed at similar to 2.1-2.0 Ga following a long period of extensional tectonics within the Greenstone-dominated, 2.5-2.0 Ga Karelian craton. The similar to 1.9-1.8 Ga Svecofennian Orogen is characterised by subduction and accretion from the southwest. An initial emplacement of calc-alkaline magmas into similar to 1.9 Ga continental arcs led to the formation of the Haparanda Suite and the Porphyrite Group volcanic rocks. Following this early stage of magmatic activity, and separated from it by the earliest deformation and metamorphism, more alkali-rich magmas of the Perthite Monzonite Suite and the Kiirunavaara Group volcanic rocks were formed at similar to 1.88 Ga. Subsequently, partial melting of the middle crust produced large volumes of similar to 1.85 and 1.8 Ga S-type granites in conjunction with subduction related A-/I-type magmatism and associated deformation and metamorphism. In our metallogenetic model the ore formation is considered to relate to the geological evolution as follows. Iron formations and a few stratiform sulphide deposits were deposited in relation to exhalative processes in rift bounded marine basins. The iron formations may be sub-divided into BIF-(banded iron formations) and Mg rich types, and at several locations these types grade into each other. There is no direct age evidence to constrain the deposition of iron formations, but stable isotope data and stratigraphic correlations suggest a formation within the 2.1-2.0 Ga age range. The major Kiruna-type ores formed from an iron-rich magma (generally with a hydrothermal over-print) and are restricted to areas occupied by volcanic rocks of the Kiirunavaara Group. It is suggested here that 1.89-1.88 Ga tholeiitic magmas underwent magma liquid immiscibility reactions during fractionation and interaction with crustal rocks, including metaevaporites, generating more felsic magmatic rocks and Kiruna-type iron deposits. A second generation of this ore type, with a minor economic importance, appears to have been formed about 100 Ma later. The epigenetic Cu-Au +/- Fe oxide mineralisation formed during two stages of the Svecofennian evolution in association with magmatic and metamorphic events and crustal scale shear zones. During the first stage of mineralisation, from 1.89-1.88 Ga, intrusion-related (porphyry style) mineralisation and Cu-Au deposits of IOCG affinity formed from magmatic-hydrothermal systems, whereas vein-style and shear zone deposits largely formed at c. 1.78 Ga. The large range of different Fe oxide and Cu-Au +/- Fe oxide deposits in Northern Norrbotten is associated with various alteration systems, involving e.g. scapolite, albite, K feldspar, biotite, carbonates, tourmaline and sericite. However, among the apatite iron ores and the epigenetic Cu-Au +/- Fe oxide deposits the character of mineralisation, type of ore- and alteration minerals and metal associations are partly controlled by stratigraphic position (i.e. depth of emplacement). Highly saline, NaCl + CaCl2 dominated fluids, commonly also including a CO2-rich population, appear to be a common characteristic feature irrespective of type and age of deposits. Thus, fluids with similar characteristics appear to have been active during quite different stages of the geological evolution. Ore fluids related to epigenetic Cu-Au Fe oxides display a trend with decreasing salinity, which probably was caused by mixing with meteoric water. Tentatively, this can be linked to different Cu-Au ore paragenesis, including an initial (magnetite)-pyrite-chalcopyrite stage, a main chalcopyrite stage, and a late bornite stage. Based on the anion composition and the Br/Cl ratio of ore related fluids bittern brines and metaevaporites (including scapolite) seem to be important sources to the high salinity hydrothermal systems generating most of the deposits in Norrbotten. Depending on local conditions and position in the crust these fluids generated a variety of Cu-Au deposits. These include typical IOCG-deposits (Fe-oxides and Cu-Au are part of the same process), IOCG of iron stone type (pre-existing Fe-oxide deposit with later addition of Cu-Au), IOCG of reduced type (lacking Fe-oxides due to local reducing conditions) and vein-style Cu-Au deposits. From a strict genetic point of view, IOCG deposits that formed from fluids of a mainly magmatic origin should be considered to be a different type than those deposits associated with mainly non-magmatic fluids. The former tend to overlap with porphyry systems, whereas those of a mainly non-magmatic origin overlap with sediment hosted Cu-deposits with respect to their origin and character of the ore fluids.
  •  
8.
  • Martinsson, Olof, et al. (författare)
  • Stratiform-stratabound sulphide deposits
  • 2007
  • Ingår i: Metallogeny and tectonic evolution of the Northern Fennoscandian Shield. - Espoo : Geological Survey of Finland. - 9789522170057 ; , s. 18-19
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
9.
  •  
10.
  • Weihed, Pär, et al. (författare)
  • Precambrian geodynamics and ore formation : the Fennoscandian Shield
  • 2006
  • Ingår i: The 27th Nordic Geological Winter Meeting, January 9-12, 2006, Oulu, Finland. - Helsinki : Geological Society of Finland. ; , s. 172-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The complex geodynamic evolution of the Fennoscandian Shield from 2.06 to 1.78 Ga involved rapid accretion of island arcs and several microcontinent-continent collisions in a complex array of orogens. With a few exceptions, all major ore deposits formed in specific tectonic settings between 2.06 and 1.78 Ga and thus a strong geodynamic control on ore deposit formation is suggested.All orogenic gold deposits formed syn- to post-peak metamorphism and their timing reflects the orogenic younging of the shield towards the SW and west.The ca. 2.5 to 2.4 Ga Ni-Cu±PGE deposits formed in basins formed during rifting of the Archaean craton at ca. 2.5 to 2.4 Ga, while Svecokarelian ca. 1.89 to 1.88 Ga Ni-Cu deposits are related to mafic-ultramafic rocks intruded along linear belts at the accretionary margins of microcratons.All major VMS deposits in the Fennoscandian Shield formed between 1.97 and 1.88 Ga, in extensional settings, prior to basin inversion and accretion. This occurred in primitive, bimodal arc complexes during extension, in strongly extensional intra-arc regions that developed on continental or mature arc crust or in intra-continental, or continental margin back-arc, extensional regions developed on older continental crust.Of the iron oxide-copper-gold deposits the oldest deposits formed in continental arcs or magmatic arcs inboard of the active subduction zone. Younger mineralization took place during cratonization distal to the subduction zone.Finally, the large volumes of anorthositic magmas formed a major concentration of Ti under granulite facies conditions, about 40 million years after the last regional deformation of the Sveconorwegian Orogeny.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy