SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;lar1:(mdh);lar1:(ri)"

Sökning: LAR1:uu > Mälardalens universitet > RISE

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Höglund, Joel, 1979-, et al. (författare)
  • Lightweight certificate revocation for low-power IoT with end-to-end security
  • 2023
  • Ingår i: Journal of Information Security and Applications. - Amsterdam : Elsevier Ltd. - 2214-2134 .- 2214-2126. ; 73
  • Tidskriftsartikel (refereegranskat)abstract
    • Public key infrastructure (PKI) provides the basis of authentication and access control in most networked systems. In the Internet of Things (IoT), however, security has predominantly been based on pre-shared keys (PSK), which cannot be revoked and do not provide strong authentication. The prevalence of PSK in the IoT is due primarily to a lack of lightweight protocols for accessing PKI services. Principal among these services are digital certificate enrollment and revocation, the former of which is addressed in recent research and is being pushed for standardization in IETF. However, no protocol yet exists for retrieving certificate status information on constrained devices, and revocation is not possible unless such a service is available. In this work, we start with implementing the Online Certificate Status Protocol (OCSP), the de facto standard for certificate validation on the Web, on state-of-the-art constrained hardware. In doing so, we demonstrate that the resource overhead of this protocol is unacceptable for highly constrained environments. We design, implement and evaluate a lightweight alternative to OCSP, TinyOCSP, which leverages recently standardized IoT protocols, such as CoAP and CBOR. In our experiments, validating eight certificates with TinyOCSP required 41% less energy than validating just one with OCSP on an ARM Cortex-M3 SoC. Moreover, validation transactions encoded with TinyOCSP are at least 73% smaller than the OCSP equivalent. We design a protocol for compressed certificate revocation lists (CCRL) using Bloom filters which together with TinyOCSP can further reduce validation overhead. We derive a set of equations for computing the optimal filter parameters, and confirm these results through empirical evaluation. © 2023 The Authors
  •  
2.
  • Khurshid, Anum, et al. (författare)
  • AutoCert : Automated TOCTOU-secure digital certification for IoT with combined authentication and assurance
  • 2023
  • Ingår i: Computers & security (Print). - : Elsevier Ltd. - 0167-4048 .- 1872-6208. ; 124
  • Tidskriftsartikel (refereegranskat)abstract
    • The Internet of Things (IoT) network is comprised of heterogeneous devices which are part of critical infrastructures throughout the world. To enable end-to-end security, the Public Key Infrastructure (PKI) is undergoing advancements to incorporate IoT devices globally which primarily provides device authentication. In addition to this, integrity of the software-state is vital, where Remote Attestation (RA) and Integrity Certificates play an important role. Though, Integrity Certificate verifies the software-state integrity of the device at the time of execution of the remote attestation process, it does not provide mechanisms to validate that the current software-state corresponds to the attested state. This issue is referred to as the Time-Of-Check to Time-Of-Use (TOCTOU) problem and remains unsolved in the context of Integrity Certificates. In this paper, we propose AutoCert, the first TOCTOU-secure mechanism to combine software-state integrity with PKI for IoT which resolves the TOCTOU problem in RA and Integrity Certificates. To this end, we utilize the IETF Remote Attestation Procedures architecture and standard X509 IoT profile certificates to ensure both device authentication and software assurance for IoT. We implement and evaluate the performance of the AutoCert proof-of-concept on a real IoT device, the OPTIGA TPM Evaluation Kit, to show its practicality and usability. AutoCert can validate the attested state of an IoT device in approximately 4746 milliseconds, with a minimal network overhead of 350 bytes. 
  •  
3.
  • Raza, Shahid, 1980-, et al. (författare)
  • Lithe: Lightweight Secure CoAP for the Internet of Things
  • 2013
  • Ingår i: IEEE Sensors Journal. - 1530-437X .- 1558-1748. ; 13, s. 3711-3720
  • Tidskriftsartikel (refereegranskat)abstract
    • The Internet of Things (IoT) enables a wide range of application scenarios with potentially critical actuating and sensing tasks, e.g., in the e-health domain. For communication at the application layer, resource-constrained devices are expected to employ the Constrained Application Protocol (CoAP) that is currently being standardized at the IETF. To protect the transmission of sensitive information, secure CoAP (CoAPs) mandates the use of Datagram TLS (DTLS) as the underlying security protocol for authenticated and confidential communica- tion. DTLS, however, was originally designed for comparably powerful devices that are interconnected via reliable, high- bandwidth links.In this paper, we present Lithe – an integration of DTLS and CoAP for the IoT. With Lithe, we additionally propose a novel DTLS header compression scheme that aims to significantly reduce the header overhead of DTLS leveraging the 6LoWPAN standard. Most importantly, our proposed DTLS header com- pression scheme does not compromise the end-to-end security properties provided by DTLS. At the same time, it considerably reduces the number of transmitted bytes while maintaining DTLS standard compliance. We evaluate our approach based on a DTLS implementation for the Contiki operating system. Our evaluation results show significant gains in terms of packet size, energy consumption, processing time, and network-wide response times, when compressed DTLS is enabled. 
  •  
4.
  • Raza, Shahid, 1980-, et al. (författare)
  • SVELTE : Real-time Intrusion Detection in the Internet of Things
  • 2013
  • Ingår i: Ad hoc networks. - : Elsevier. - 1570-8705 .- 1570-8713. ; 11:8, s. 2661-2674
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Internet of Things (IoT), resource-constrained things are connected to the unreliable and untrusted Internet via IPv6 and 6LoWPAN networks. Even when they are secured with encryption and authentication, these things are exposed both to wireless attacks from inside the 6LoWPAN network and from the Internet. Since these attacks may succeed, Intrusion Detection Systems (IDS) are necessary. Currently, there are no IDSs that meet the requirements of the IPv6-connected IoT since the available approaches are either customized for Wireless Sensor Networks (WSN) or for the conventional Internet.In this paper we design, implement, and evaluate a novel intrusion detection system for the IoT that we call SVELTE. In our implementation and evaluation we primarily target routing attacks such as spoofed or altered information, sinkhole, and selective-forwarding. However, our approach can be extended to detect other attacks. We implement SVELTE in the Contiki OS and thoroughly evaluate it. Our evaluation shows that in the simulated scenarios, SVELTE detects all malicious nodes that launch our implemented sinkhole and/or selective forwarding attacks. However, the true positive rate is not 100%, i.e., we have some false alarms during the detection of malicious nodes. Also, SVELTE’s overhead is small enough to deploy it on constrained nodes with limited energy and memory capacity. 
  •  
5.
  • Wang, Han, et al. (författare)
  • FL4IoT : IoT Device Fingerprinting and Identification Using Federated Learning
  • 2023
  • Ingår i: ACM Trans. Internet Things. - : Association for Computing Machinery. - 2691-1914 .- 2577-6207. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Unidentified devices in a network can result in devastating consequences. It is, therefore, necessary to fingerprint and identify IoT devices connected to private or critical networks. With the proliferation of massive but heterogeneous IoT devices, it is getting challenging to detect vulnerable devices connected to networks. Current machine learning-based techniques for fingerprinting and identifying devices necessitate a significant amount of data gathered from IoT networks that must be transmitted to a central cloud. Nevertheless, private IoT data cannot be shared with the central cloud in numerous sensitive scenarios. Federated learning (FL) has been regarded as a promising paradigm for decentralized learning and has been applied in many different use cases. It enables machine learning models to be trained in a privacy-preserving way. In this article, we propose a privacy-preserved IoT device fingerprinting and identification mechanisms using FL; we call it FL4IoT. FL4IoT is a two-phased system combining unsupervised-learning-based device fingerprinting and supervised-learning-based device identification. FL4IoT shows its practicality in different performance metrics in a federated and centralized setup. For instance, in the best cases, empirical results show that FL4IoT achieves ∌99% accuracy and F1-Score in identifying IoT devices using a federated setup without exposing any private data to a centralized cloud entity. In addition, FL4IoT can detect spoofed devices with over 99% accuracy.
  •  
6.
  • Wang, Han, et al. (författare)
  • SparSFA : Towards robust and communication-efficient peer-to-peer federated learning
  • 2023
  • Ingår i: Computers & security (Print). - : Elsevier Ltd. - 0167-4048 .- 1872-6208. ; 129
  • Tidskriftsartikel (refereegranskat)abstract
    • Federated Learning (FL) has emerged as a powerful paradigm to train collaborative machine learning (ML) models, preserving the privacy of the participants’ datasets. However, standard FL approaches present some limitations that can hinder their applicability in some applications. Thus, the need of a server or aggregator to orchestrate the learning process may not be possible in scenarios with limited connectivity, as in some IoT applications, and offer less flexibility to personalize the ML models for the different participants. To sidestep these limitations, peer-to-peer FL (P2PFL) provides more flexibility, allowing participants to train their own models in collaboration with their neighbors. However, given the huge number of parameters of typical Deep Neural Network architectures, the communication burden can also be very high. On the other side, it has been shown that standard aggregation schemes for FL are very brittle against data and model poisoning attacks. In this paper, we propose SparSFA, an algorithm for P2PFL capable of reducing the communication costs. We show that our method outperforms competing sparsification methods in P2P scenarios, speeding the convergence and enhancing the stability during training. SparSFA also includes a mechanism to mitigate poisoning attacks for each participant in any random network topology. Our empirical evaluation on real datasets for intrusion detection in IoT, considering both balanced and imbalanced-dataset scenarios, shows that SparSFA is robust to different indiscriminate poisoning attacks launched by one or multiple adversaries, outperforming other robust aggregation methods whilst reducing the communication costs through sparsification. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy