SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;lar1:(ri);pers:(Österlind Fredrik)"

Sökning: LAR1:uu > RISE > Österlind Fredrik

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Zhang, Haibo, et al. (författare)
  • Time-optimal convergecast with separated packet copying : Scheduling policies and performance
  • 2015
  • Ingår i: IEEE Transactions on Vehicular Technology. - 0018-9545 .- 1939-9359. ; 54:2, s. 793-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Convergecast, in which packets originating from multiple sources are reported to a single sink, is a fundamental primitive for data collection in wireless sensor networks. This paper investigates the time-optimal link-scheduling problem for time-division multiple-access (TDMA)-based convergecast, aiming to minimize the amount of time required to complete convergecast. We observe that packet copying between the microcontroller and the radio transceiver in existing sensor platforms has a big impact on the packet forwarding delay, and we propose a novel model for convergecast in which packet copying is separated from packet transmission and reception. We establish tight lower bounds on the number of time slots required for convergecast in networks with line and tree routing topologies, and we present both centralized and distributed algorithms for constructing the time-optimal convergecast schedules. We evaluate our scheme in both simulations and experiments on hardware. The results show that our scheme can achieve a system throughput (defined as the number of data bits received by the sink per second) of 202.8 kb/s, which is 86.31% of the theoretical bound. In comparison with the traditional TDMA-based convergecast schemes, our scheme can achieve up to a 86.22% improvement on system throughput.
  •  
10.
  • Österlind, Fredrik, 1981- (författare)
  • Improving Low-Power Wireless Protocols with Timing-Accurate Simulation
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low-power wireless technology enables numerous applications in areas from environmental monitoring and smart cities, to healthcare and recycling. But resource-constraints and the distributed nature of applications make low-power wireless networks difficult to develop and understand, resulting in increased development time, poor performance, software bugs, or even network failures. Network simulators offer full non-intrusive visibility and control, and are indispensible tools during development. But simulators do not always adequately represent the real world, limiting their applicability.In this thesis I argue that high simulation timing accuracy is important when developing high-performance low-power wireless protocols. Unlike in generic wireless network simulation, timing becomes important since low-power wireless networks use extremely timing-sensitive software techniques such as radio duty-cycling. I develop the simulation environment Cooja that can simulate low-power wireless networks with high timing accuracy.Using timing-accurate simulation, I design and develop a set of new low-power wireless protocols that improve on throughput, latency, and energy-efficiency. The problems that motivate these protocols were revealed by timing-accurate simulation. Timing-accurate software execution exposed performance bottlenecks that I address with a new communication primitive called Conditional Immediate Transmission (CIT). I show that CIT can improve on throughput in bulk transfer scenarios, and lower latency in many-to-one convergecast networks. Timing-accurate communication exposed that the hidden terminal problem is aggravated in duty-cycled networks that experience traffic bursts. I propose the Strawman mechanism that makes a radio duty-cycled network robust against traffic bursts by efficiently coping with hidden terminals.The Cooja simulation environment is available for use by others and is the default simulator in the Contiki operating system since 2006.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy