SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "LAR1:uu ;mspu:(conferencepaper);pers:(Edström Kristina)"

Search: LAR1:uu > Conference paper > Edström Kristina

  • Result 1-10 of 118
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aktekin, Burak, et al. (author)
  • Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO)—In Situ Neutron Diffraction and Performance in Li-Ion Full Cells
  • 2018
  • Conference paper (peer-reviewed)abstract
    • LiNi0.5Mn1.5O4 (LNMO) is a promising spinel-type positive electrode for lithium ion batteries as it operates at high voltage and possesses high power capability. However, rapid performance degradation in full cells, especially at elevated temperatures, is a problem. There has been a considerable interest in its crystal structure as this is known to affect its electrochemical performance. LNMO can adopt a P4332 (cation ordered) or Fd-3m (cation disordered) arrangement depending on the synthesis conditions. Most of the studies in literature agree on better electrochemical performance for disordered LNMO [1], however, a clear understanding of the reason for this behaviour is still lacking. This partly arises from the fact that synthesis conditions leading to disordering also lead to oxygen deficiency, rock-salt impurities and therefore generate some Mn3+ [2]. Most commonly, X-ray diffraction is used to characterize these materials, however, accurate structural analysis is difficult due to the near identical scattering lengths of Mn and Ni. This is not the case for neutron diffraction. In this study, an in-situ neutron diffraction heating-cooling experiment was conducted on slightly Mn-rich LNMO under pure oxygen atmosphere in order to investigate relationship between disordering and oxygen deficiency. The study shows for the first time that there is no direct relationship between oxygen loss and cation disordering, as disordering starts prior to oxygen release. Our findings suggest that it is possible to obtain samples with varying degrees of ordering, yet with the same oxygen content and free from impurities. In the second part of the study, highly ordered, partially ordered and fully disordered samples have been tested in LNMO∥LTO (Li4Ti5O12) full cells at 55 °C. It is shown that differences in their performances arise only after repeated cycling, while all the samples behave similarly at the beginning of the test. The difference is believed to be related to instabilities of LNMO at higher voltages, that is, in its lower lithiation states.[1] A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 7 (2014) 1339.[2] M. Kunduraci, G.G. Amatucci, J. Power Sources. 165 (2007) 359–367.
  •  
2.
  • Aktekin, Burak, et al. (author)
  • Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures
  • 2017
  • Conference paper (peer-reviewed)abstract
    • The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptions5 in order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.ReferencesA. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 
  •  
3.
  • Aktekin, Burak, et al. (author)
  • Understanding the Rapid Capacity Fading of LNMO-LTO Lithium-ion Cells at Elevated Temperature
  • 2017
  • Conference paper (other academic/artistic)abstract
    • The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) has an average operating potential around 4.7 V vs. Li/Li+ and a gravimetric charge capacity of 146 mAh/g making it a promising high energy density positive electrode for Li-ion batteries. Additionally, the 3-D lithium transport paths available in the spinel structure enables fast diffusion kinetics, making it suitable for power applications [1]. However, the material displays large instability during cycling, especially at elevated temperatures. Therefore, significant research efforts have been undertaken to better understand and improve this electrode material.Electrolyte (LiPF6 in organic solvents) oxidation and transition metal dissolution are often considered as the main problems [2] for the systems based on this cathode material. These can cause a variety of problems (in different parts of the cell) eventually increasing internal cell resistance, causing active mass loss and decreasing the amount of cyclable lithium.Among these issues, cyclable lithium loss cannot be observed in half cells since lithium metal will provide almost unlimited capacity. Being a promising full cell chemistry for high power applications, there has also been a considerable interest on LNMO full cells with Li4Ti5O12 (LTO) used as the negative electrode. For this chemistry, for an optimized cell, quite stable cycling for >1000 cycles has been reported at room temperature while fast fading is still present at 55 °C [3]. This difference in performance (RT vs. 55 °C) is beyond most expectations and likely does not follow any Arrhenius-type of trend.In this study, a comprehensive analysis of LNMO-LTO cells has been performed at different temperatures (RT, 40 °C and 55 °C) to understand the underlying reasons behind stable cycling at room temperature and rapid fading at 55 °C. For this purpose, testing was made on regular cells (Figure 1a), 3-electrode cells (Figure 1b) and back-to-back cells [4] (Figure 1c). Electrode interactions (cross-talk) have been shown to exist in the LTO-LNMO system [5] and back-to-back cells have therefore been used to observe fading under conditions where cross-talk is impossible [4]. Galvanostatic cycling combined with short-duration intermittent current interruptions [6] was performed in order to separately observe changes in internal resistance for LNMO and LTO electrodes in a full cell. Ex-situ characterization of electrodes have also been performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES).Our findings show how important the electrode interactions can be in full cells, as a decrease in lithium inventory was shown to be the major factor for the observed capacity fading at elevated temperature. In this presentation, the effect of other factors – active mass loss and internal cell resistance – will be discussed together with the consequences of cross-talk.References[1] A. Kraytsberg et al. Adv. Energy Mater., vol. 2, pp. 922–939,2012.[2] J. H. Kim et al., ChemPhysChem, vol. 15, pp. 1940–1954, 2014.[3] H. M. Wu et al. J. E. Soc., vol. 156, pp. A1047–A1050, 2009.[4] S. R. Li et al., J. E. Soc., vol. 160, no. 9, pp. A1524–A1528, 2013.[5] Dedryvère et al. J. Phys. C., vol. 114 (24), pp. 10999–11008, 2010.[6] M. J. Lacey, ChemElectroChem, pp. 1–9, 2017.
  •  
4.
  •  
5.
  •  
6.
  • Bertrand, Philippe, et al. (author)
  • Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES  
  • 2017
  • Conference paper (other academic/artistic)abstract
    • In this presentation, we will present a recent example on electrode/electrolyte interfaces of materials for energy storage devices using hard X-rays photoelectron spectroscopy (HAXPES). A nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). [1] While electrode/electrolyte study has been performed widely on Li-ion battery, not so much attention as been addressed to the Na-ion technology so far. We will focus in this presentation to NaxCo2/3Mn2/9Ni1/9O2, a novel intercalation material that could be be used as cathode in Na-ion batteries. [2] During a typical charge/discharge cycle (i.e. extraction/insertion of Na+ ions), the oxidation state of the various transition metals in the compound changes in a reversible way. A step by step analysis of the first electrochemical cycle was carried out by HAXPES providing unique information on the oxidation state of Ni, Co and Mn as well as a very interesting insight into the passivation layer present at the surface of the electrode, which results from the degradation of the electrolyte components upon reaction. This investigation shows the role of the SPI and the complexity of the redox reactions. [3]  [1] B. Philippe, M. Hahlin, K. Edström, T. Gustafsson, H. Siegbahn, H. Rensmo, J. Electrochem. Soc, 2016, 163, A178-A191[2] S. Doubaji, M. Valvo, I. Saadoune, M. Dahbi, K.Edström, J. Power Sources, 2014, 266, 275-281[3] S. Doubaji, B. Philippe, I. Saadoune, M. Gorgoi, T. Gustafsson, A. Solhy, M. Valvo, H. Rensmo, K. Edström, ChemSusChem, 2016, 9, 97-108
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 118

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view