SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;mspu:(researchreview);pers:(Hughes Diarmaid 1956)"

Sökning: LAR1:uu > Forskningsöversikt > Hughes Diarmaid 1956

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Dan I., et al. (författare)
  • Antibiotic resistance and its cost : is it possible to reverse resistance?
  • 2010
  • Ingår i: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 8:4, s. 260-271
  • Forskningsöversikt (refereegranskat)abstract
    • Most antibiotic resistance mechanisms are associated with a fitness cost that is typically observed as a reduced bacterial growth rate. The magnitude of this cost is the main biological parameter that influences the rate of development of resistance, the stability of the resistance and the rate at which the resistance might decrease if antibiotic use were reduced. These findings suggest that the fitness costs of resistance will allow susceptible bacteria to outcompete resistant bacteria if the selective pressure from antibiotics is reduced. Unfortunately, the available data suggest that the rate of reversibility will be slow at the community level. Here, we review the factors that influence the fitness costs of antibiotic resistance, the ways by which bacteria can reduce these costs and the possibility of exploiting them.
  •  
2.
  • Andersson, D.I, et al. (författare)
  • Antibiotikaresistens här för att stanna?
  • 1998
  • Ingår i: Läkartidningen. - 0023-7205 .- 1652-7518. ; 95:37, s. 3940-3944
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Andersson, Dan I., et al. (författare)
  • Biological roles of translesion synthesis DNA polymerases in eubacteria
  • 2010
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 77:3, s. 540-548
  • Forskningsöversikt (refereegranskat)abstract
    • Biological systems are strongly selected to maintain the integrity of their genomes by prevention and repair of external and internal DNA damages. However, some types of DNA lesions persist and might block the replication apparatus. The universal existence of specialized translesion synthesis DNA polymerases (TLS polymerases) that can bypass such lesions in DNA implies that replication blockage is a general biological problem. We suggest that the primary function for which translesion synthesis polymerases are selected is to rescue cells from replication arrest at lesions in DNA, a situation that, if not amended, is likely to cause an immediate and severe reduction in cell fitness and survival. We will argue that the mutagenesis observed during translesion synthesis is an unavoidable secondary consequence of this primary function and not, as has been suggested, an evolved mechanism to increase mutation rates in response to various stresses. Finally, we will discuss recent data on additional roles for translesion synthesis polymerases in the formation of spontaneous deletions and in transcription-coupled TLS, where the coupling of transcription to TLS is proposed to allow the rescue of the transcription machinery arrested at DNA lesions.
  •  
4.
  • Arrazuria, Rakel, et al. (författare)
  • Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
  •  
5.
  • Ehrenberg, Måns, et al. (författare)
  • tRNA-ribosome interactions
  • 1995
  • Ingår i: Biochemistry and Cell Biology. - 0829-8211 .- 1208-6002. ; 73:11-12, s. 1049-1054
  • Forskningsöversikt (refereegranskat)abstract
    • Direct measurements of the rates of dissociation of dipeptidyl-tRNA from the ribosome show that hyperaccurate SmP and SmD ribosomes have unstable A-site binding of peptidyl-tRNA, while P-site binding is extremely stable in relation to the wild type. Error-prone Ram ribosomes, on the other hand, have stable A-site and unstable P-site binding of peptidyl-tRNA. At least for these mutant ribosomes, we conclude that stabilization of peptidyl-tRNA in one site destabilizes binding in the other. Elongation factor Tu (EF-Tu) undergoes a dramatic structural transition from its GDP-bound form to its active GTP-bound form, in which it binds aa-tRNA (aminoacyl-tRNA) in ternary complex. The effects of substitution mutations at three sites in domain I of EF-Tu, Gln124, Leu120, and Tyr160, all of which point into the domain I-domain III interface in both the GTP and GDP conformations of EF-Tu, were examined. Mutations at each position cause large reductions in aa-tRNA binding. An attractive possibility is that the mutations alter the domain I-domain III interface such that the switching of EF-Tu between different conformations is altered, decreasing the probability of aa-tRNA binding. We have previously found that two GTPs are hydrolyzed per peptide bond on EF-Tu, the implication being that two molecules of EF-Tu may interact on the ribosome to catalyze the binding of a single aa-tRNA to the A-site. More recently we found that ribosomes programmed with mRNA constructs other than poly(U), including the sequence AUGUUUACG, invariably use two GTPs per peptide bond in EF-Tu function. Other experiments measuring the protection of aa-tRNA from deacylation or from RNAse A attack show that protection requires two molecules of EF-Tu, suggesting an extended ternary complex. To remove remaining ambiguities in the interpretion of these experiments, we are making direct molecular weight determinations with neutron scattering and sedimentation-diffusion techniques.
  •  
6.
  • Hughes, Diarmaid, 1956-, et al. (författare)
  • Environmental and genetic modulation of the phenotypic expression of antibiotic resistance
  • 2017
  • Ingår i: FEMS Microbiology Reviews. - : Oxford University Press (OUP). - 0168-6445 .- 1574-6976. ; 41:3, s. 374-391
  • Forskningsöversikt (refereegranskat)abstract
    • Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic 'dark matter') that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.
  •  
7.
  • Hughes, Diarmaid, 1956- (författare)
  • Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes
  • 2000
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 1:6, s. 0006.1-0006.8
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)abstract
    • Inversions and translocations distinguish the genomes of closely related bacterial species, but most of these rearrangements preserve the relationship between the rearranged fragments and the axis of chromosome replication. Within species, such rearrangements are found less frequently, except in the case of clinical isolates of human pathogens, where rearrangements are very frequent.
  •  
8.
  • Hughes, Diarmaid, 1956-, et al. (författare)
  • Evolutionary Trajectories to Antibiotic Resistance
  • 2017. - 71
  • Ingår i: Annual Review of Microbiology. - : Annual Reviews. - 0066-4227 .- 1545-3251. - 9780824311711 ; 71, s. 579-596
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to predict the evolutionary trajectories of antibiotic resistance would be of great value in tailoring dosing regimens of antibiotics so as to maximize the duration of their usefulness. Useful prediction of resistance evolution requires information about (a) the mutation supply rate, (b) the level of resistance conferred by the resistance mechanism, (c) the fitness of the antibiotic-resistant mutant bacteria as a function of drug concentration, and (d) the strength of selective pressures. In addition, processes including epistatic interactions and compensatory evolution, coselection of drug resistances, and population bottlenecks and clonal interference can strongly influence resistance evolution and thereby complicate attempts at prediction. Currently, the very limited quantitative data on most of these parameters severely limit attempts to accurately predict trajectories of resistance evolution.
  •  
9.
  • Hughes, Diarmaid, 1956-, et al. (författare)
  • Rifampicin Resistance : Fitness Costs and the Significance of Compensatory Evolution
  • 2013
  • Ingår i: Antibiotics. - : MDPI. - 0066-4774 .- 2079-6382. ; 2:2, s. 206-216
  • Forskningsöversikt (refereegranskat)abstract
    • Seventy years after the introduction of antibiotic chemotherapy to treat tuberculosis, problems caused by drug-resistance in Mycobacterium tuberculosis have become greater than ever. The discovery and development of novel drugs and drug combination therapies will be critical to managing these problematic infections. However, to maintain effective therapy in the long-term and to avoid repeating the mistakes of the past, it is essential that we understand how resistance to antibiotics evolves in M. tuberculosis. Recent studies in genomics and genetics, employing both clinical isolates and model organisms, have revealed that resistance to the frontline anti-tuberculosis drug, rifampicin, is very strongly associated with the selection of fitness compensatory mutations in the different subunits of RNA polymerase. This mode of resistance evolution may also apply to other drugs, and knowledge of the rates and mechanisms could be used to design improved diagnostics and by tracking the evolution of infectious strains, to inform the optimization of therapies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy