SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:uu ;pers:(Ahuja Rajeev);conttype:(scientificother)"

Sökning: LAR1:uu > Ahuja Rajeev > Övrigt vetenskapligt

  • Resultat 1-10 av 25
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Emanuelsson, Rikard, et al. (författare)
  • Configuration- and Conformation-Dependent Electronic Structure Variations in 1,4-Disubstituted Cyclohexanes Enabled by a Carbon-to-Silicon Exchange
  • 2014
  • Ingår i: Chemistry - A European Journal. - 0947-6539. ; 20:30, s. 9304-9311
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Cyclohexane, with its well-defined conformers, could be an ideal force-controlled molecular switch if it were to display substantial differences in electronic and optical properties between its conformers. We utilize sigma conjugation in heavier analogues of cyclohexanes (i.e. cyclohexasilanes) and show that 1,4-disubstituted cyclohexasilanes display configuration-and conformation-dependent variations in these properties. Cis- and trans-1,4-bis(trimethylsilylethynyl)-cyclohexasilanes display a 0.11 V difference in their oxidation potentials (computed 0.11 V) and a 0.34 eV difference in their lowest UV absorption (computed difference between first excitations 0.07 eV). This is in stark contrast to differences in the corresponding properties of analogous all-carbon cyclohexanes (computed 0.02 V and 0.03 eV, respectively). Moreover, the two chair conformers of the cyclohexasilane trans isomer display large differences in electronic-structure-related properties. This enables computational design of a mechanically force-controlled conductance switch with a calculated single-molecule ON/OFF ratio of 213 at zero-bias voltage.
  •  
3.
  •  
4.
  •  
5.
6.
  •  
7.
  •  
8.
  • Löfås, Henrik, et al. (författare)
  • Computational Study of the Chaotic Behavior in Single-molecule Conduction
  • 2013
  • Ingår i: 2013 MRS Spring Meeting : Electrical Contacts to Nanomaterials and Nanodevices.
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • Recently we have seen great advances in synthesis and fabrication of nanostructures. However, there is still no consensus on the conductance of small organic molecules, where different values of the conductance are often attributed to differences in metal-molecule interface structure or different molecular conformations[1,2]. Control and characterization of the metal-molecule interface during formation of the junction is in practice an impossible task. To get insight into this highly dynamic process, computer simulations are needed; here we are going to show a combination of ab-initio molecular dynamics (MD)-simulations and conductance calculations to address this problem.The conductance of a junction is mainly determined by the relative position of the energy level closest to the Fermi level of the electrodes and by the coupling of the corresponding electronic state to the electrodes[2]. These parameters are greatly influenced by the nature of the interaction and/or chemical bond between electrodes and the molecule. Information about the nature of this interaction and its variation with different binding sites can be extracted from the conduction spectra. Here we are using MD-simulations to get an unbiased set of geometries, thus mimicking the randomness of a real junction under thermal fluctuations. From the obtained geometries the zero-bias conductance is calculated and used for histograms to investigate the statistics of the junction.The obtained histograms for the thiol-bonded molecules are fitted with probability distributions for different Gaussian ensembles and we show that the interaction between the electrode and the molecule gives rise to quantum chaos in the junction. The effect of quantum chaos have earlier been found experimentally for quantum dots[3] and nanowires[4]. By removing the symmetry in the junction the chaotic behavior can be increased. We also compare the thiol anchoring groups with amines and we can see that the weaker coupling to the gold for the amines increases the conductance fluctuations in the junctions by one to two orders of magnitude. By tuning the ratio of the coupling between the electrodes and the molecular state we show, that the junction can be switched from a chaotic behavior to a case with a normal distributed conductance spectrum where only temperature fluctuations are present.[1] S. L. Bernasek, Angew. Chem. Int. Ed. 51, 9737 (2012).[2] A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).[3] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).[4] J. L. Costa-Krämer, N. García, P. García-Mochales, P. A. Serena, M. I. Marqués, and A. Correia, Phys. Rev. B 55, 5416 (1997).
  •  
9.
  •  
10.
  • Löfås, Henrik, et al. (författare)
  • The [1,3]-Si→O Silyl Shift from a Nonconducting Acylsilane to a Conducting Brook-Silene as Basis for a Molecular Switch
  • nnnn
  • Annan publikation (övrigt vetenskapligt)abstract
    • By usage of density functional theory (DFT) calculations we explored if the [1,3]-silyl shift leading from an acylsilane with two p-conjugated substituents to a silene (a Si=C double bonded compound) can be used as a basis for a molecular conductance switch. In such a switch, the acylsilane, with a tetrahedral saturated silicon atom disrupting the conjugation through the molecule, acts as the OFF state, whereas the silene with a conjugated path running through the complete molecule represents the ON state. Our requirements are (i) the silenes should be slightly higher in relative energy than the acylsilane so as to promote a thermal backrearragment, (ii) the barrier for the backtransfer of the silyl group should be 25-30 kcal/mol, (iii) the ON/OFF conductance ratio should be high, and (iv) the switch should be realistic. According to our calculations using non-equilibrium Green’s function theory, a 1,2-bis(4-thiophenylethynyl)silene has a conductance which is 270 times higher than that of the corresponding acylsilane at zero bias voltage. However, at a voltage of +1 V the ON/OFF ratio decreases to ~40.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
  • [1]23Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy