SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "Lotta Agholme ;pers:(Chebli Jasmine)"

Sökning: Lotta Agholme > Chebli Jasmine

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agholme, Lotta, et al. (författare)
  • Low-dose γ-secretase inhibition increases secretion of Aβ peptides and intracellular oligomeric Aβ.
  • 2017
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 85, s. 211-219
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibitors have been considered promising drug candidates against Alzheimer's disease (AD) due to their ability to reduce amyloid-β (Aβ) production. However, clinical trials have been halted due to lack of clinical efficacy and/or side effects. Recent in vitro studies suggest that low doses of γ-secretase inhibitors may instead increase Aβ production. Using a stem cell-derived human model of cortical neurons and low doses of the γ-secretase inhibitor DAPT, the effects on a variety of Aβ peptides were studied using mass spectrometry. One major focus was to develop a novel method for specific detection of oligomeric Aβ (oAβ), and this was used to study the effects of low-dose γ-secretase inhibitor treatment on intracellular oAβ accumulation. Low-dose treatment (2 and 20nM) with DAPT increased the secretion of several Aβ peptides, especially Aβx-42. Furthermore, using the novel method for oAβ detection, we found that 2nM DAPT treatment of cortical neurons resulted in increased oAβ accumulation. Thus, low dose-treatment with DAPT causes both increased production of long, aggregation-prone Aβ peptides and accumulation of intracellular Aβ oligomers, both believed to contribute to AD pathology.
  •  
2.
  • Rahmati, Maryam, et al. (författare)
  • Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay
  • 2024
  • Ingår i: eNeuro. - 2373-2822. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies on genetic robustness recently revealed transcriptional adaptation (TA) as a mechanism by which an organism can compensate for genetic mutations through activation of homologous genes. Here, we discovered that genetic mutations, introducing a premature termination codon (PTC) in the amyloid precursor protein-b (appb) gene, activated TA of two other app family members, appa and amyloid precursor-like protein-2 (aplp2), in zebrafish. The observed transcriptional response of appa and aplp2 required degradation of mutant mRNA and did not depend on Appb protein level. Furthermore, TA between amyloid precursor protein (APP) family members was observed in human neuronal progenitor cells; however, compensation was only present during early neuronal differentiation and could not be detected in a more differentiated neuronal stage or adult zebrafish brain. Using knockdown and chemical inhibition, we showed that nonsensemediated mRNA decay (NMD) is involved in degradation of mutant mRNA and that Upf1 and Upf2, key proteins in the NMD pathway, regulate the endogenous transcript levels of appa, appb, aplp1, and aplp2. In conclusion, our results suggest that the expression level of App family members is regulated by the NMD pathway and that mutations destabilizing app/APP mRNA can induce genetic compensation by other family members through TA in both zebrafish and human neuronal progenitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy