SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WAKA:ref ;pers:(Inganäs Olle);pers:(Andersson Mats R);pers:(Langa Fernando)"

Sökning: WAKA:ref > Inganäs Olle > Andersson Mats R > Langa Fernando

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gadisa, Abay, et al. (författare)
  • Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells
  • 2006
  • Ingår i: Organic electronics. - 1566-1199. ; 7:4, s. 195-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge transport in a near infrared absorbing polyfluorene copolymer (APFO-Green1) and its blends with methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and 3′-(3,5-bis-trifluoromethylphenyl)-1′-(4-nitrophenyl)pyrazolino[70]fullerene (BTPF70) is reported. PCBM and BTPF70 are electron acceptor and transporting molecules in polymer based solar cells. The BTPF70 has emerged as a new electron acceptor molecule that provides adequate exciton dissociation when blended with the low band gap polyfluorene copolymer APFO-Green1. Electron transport in both net PCBM and BTPF70 films are subjected to positional and energetic disorder, with the degree of disorder being more pronounced in BTPF70. On the other hand, mixing PCBM with conjugated polymers usually leads to increased hole mobility. We have investigated and compared the acceptor concentration dependence of charge transport in APFO-Green1/PCBM and APFO-Green1/BTPF70 blend films. For better understanding of the charge transport in the heterojunction films, the field and temperature dependence of hole transport in pure APFO-Green1 films has also been studied. It is observed that the behavior of hole mobility in the blend layer is sensitive to the acceptor type. For APFO-Green1/PCBM hole only devices, the hole mobility attains a local maximum at 67 wt.% of PCBM, while on the contrary mixing any amount of BTPF70 with APFO-Green1 results into degradation of hole transport. Electron transport in both blends, however, increases monotonically as a function of acceptor loading.
  •  
2.
  • Pal, Suman Kalyan, et al. (författare)
  • Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function
  • 2010
  • Ingår i: Journal of the American Chemical Society. - 0002-7863. ; 132:35, s. 12440-12451
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the influence of three different fullerene derivatives on the charge generation and recombination dynamics of polymer/fullerene bulk heterojunction (BHJ) solar cell blends. Charge generation in APFO3/[70]PCBM and APFO3/[60]PCBM is very similar and somewhat slower than charge generation in APFO3/[70]BTPF. This difference qualitatively matches the trend in free energy change of electron transfer estimated from the LUMO energies of the polymer and fullerene derivatives. The first order (geminate) charge recombination rate is significantly different for the three fullerene derivatives studied and increases in the order APFO3/[70]PCBM andlt; APFO3/[60]PCBM andlt; APFO3/[70]BTPF. The variation in electron transfer rate cannot be explained from the LUMO energies of the fullerene derivatives and single-step electron transfer in the Marcus inverted region and simple considerations of expected trends for the reorganization energy and free energy change. Instead we suggest that geminate charge recombination occurs from a state where electrons and holes have separated to different distances in the various materials because of an initially high charge mobility, different for different materials. In a BHJ thin film this charge separation distance is not sufficient to overcome the electrostatic attraction between electrons and holes and geminate recombination occurs on the nanosecond to hundreds of nanoseconds time scale. In a BHJ solar cell, we suggest that the internal electric field in combination with polarization effects and the dynamic nature of polarons are key features to overcome electron-hole interactions to form free extractable charges.
  •  
3.
  •  
4.
  • Wang, Xiangjun, et al. (författare)
  • Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-Derivative-Based Solar Cells
  • 2005
  • Ingår i: Advanced Functional Materials. - 1616-301X. ; 15:10, s. 1665-1670
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic solar cells have been fabricated using a low-bandgap alternating copolymer of fluorene and a donor-acceptor-donor moiety (APFO-Green1), blended with 3<img src="http://www3.interscience.wiley.com/giflibrary/12/prime.gif" />-(3,5-bis-trifluoromethylphenyl)-1<img src="http://www3.interscience.wiley.com/giflibrary/12/prime.gif" />-(4-nitrophenyl)pyrazolino[70]fullerene (BTPF70) as electron acceptor. The polymer shows optical absorption in two wavelength ranges, <img src="http://www3.interscience.wiley.com/giflibrary/12/lambda.gif" /> &lt; 500 nm and 600 &lt; <img src="http://www3.interscience.wiley.com/giflibrary/12/lambda.gif" /> &lt; 1000 nm. The BTPF70 absorbs light at <img src="http://www3.interscience.wiley.com/giflibrary/12/lambda.gif" /> &lt; 700 nm. A broad photocurrent spectral response in the wavelength range 300 &lt; <img src="http://www3.interscience.wiley.com/giflibrary/12/lambda.gif" /> &lt; 1000 nm is obtained in solar cells. A photocurrent density of 3.4 mA cm-2, open-circuit voltage of 0.58 V, and power-conversion efficiency of 0.7 % are achieved under illumination of AM1.5 (1000 W m-2) from a solar simulator. Synthesis of BTPF70 is presented. Photoluminescence quenching and electrochemical studies are used to discuss photoinduced charge transfer.
  •  
5.
  • Wang, Xiangjun, et al. (författare)
  • Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm
  • 2006
  • Ingår i: Thin Solid Films. - 0040-6090. ; 511-512, s. 576-580
  • Tidskriftsartikel (refereegranskat)abstract
    • A new series of low-bandgap alternating polyfluorenes with different donor–acceptor–donor moieties have been synthesized. Electrochemical and optical absorption measurement show that onset bandgaps of these polymers range from 1.2 to 1.5 eV. These polymers, blended with a C70-derivative as acceptor, are used for solar cell fabrication. Devices show promising photovoltaic properties, and the spectral response of photocurrent covers all visible and near-infrared wavelength regions with its onset extended to 1 μm. The best data gives a photocurrent density of 3.4 mA/cm2, open circuit voltage of 0.58 V and power conversion efficiency of 0.7% under illumination of AM1.5 (1000 W/m2) from a solar simulator.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy