Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WAKA:ref ;pers:(Inganäs Olle);srt2:(2010-2011);pers:(Zhou Yi);pers:(Zhang Fengling)"

Sökning: WAKA:ref > Inganäs Olle > (2010-2011) > Zhou Yi > Zhang Fengling

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
  • Cai, Tianqi, et al. (författare)
  • Low bandgap polymers synthesized by FeCl(3) oxidative polymerization
  • 2010
  • Ingår i: Solar Energy Materials and Solar Cells. - 0927-0248. ; 94:7, s. 1275-1281
  • Tidskriftsartikel (refereegranskat)abstract
    • Four low bandgap polymers, combining an alkyl thiophene donor with benzo[c][1,2,5]thiadiazole, 2,3-diphenylquinoxaline, 2,3-diphenylthieno[3,4-b]pyrazine and 6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g] quinoxaline acceptors in a donor-acceptor-donor architecture, were synthesized via FeCl3 oxidative polymerization. The molecular weights of the polymers were improved by introducing o-dichlor-obenzene (ODCB) as the reaction solvent instead of the commonly used solvent, chloroform. The photophysical, electrochemical and photovoltaic properties of the resulting polymers were investigated and compared. The optical bandgaps of the polymers vary between 1.0 and 1.9 eV, which is promising for solar cells. The devices spin-coated from an ODCB solution of P1DB:[70]PCBM showed a power conversion efficiency of 1.08% with an open-circuit voltage of 0.91 V and a short-circuit current density of 3.36 mA cm(-2) under irradiation from an AM1.5G solar simulator (100 mW cm(-2)).
  • He, Youjun, et al. (författare)
  • Poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b ]dithiophene vinylene): Synthesis, Optical and Photovoltaic Properties
  • 2010
  • Ingår i: JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY. - John Wiley and Sons, Ltd. - 0887-624X. ; 48:8, s. 1822-1829
  • Tidskriftsartikel (refereegranskat)abstract
    • A new benzodithiophene (BDT)-based polymer, poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b]dithiophene vinylene) (PBDTV), was synthesized by Pd-catalyzed Stille-coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 x 10(-3) cm(2)/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with V-oc = 0.71 V, I-sc = 6.46 mA/cm(2), and FF = 0.57 under the illumination of AM1.5, 100 mW/cm(2).
  • Hellstrom, Stefan, et al. (författare)
  • Synthesis and characterization of three small band gap conjugated polymers for solar cell applications
  • 2010
  • Ingår i: Polymer Chemistry. - 1759-9954. ; 1:8, s. 1272-1280
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a new series of small band gap conjugated polymers utilizing donor-acceptor-donor substructures in the polymer backbone to broaden and extend the optical absorption to longer wavelengths. Three polymers were prepared by Suzuki polymerization, using the same donor-acceptor-donor segment but with different comonomers. The goal was to investigate how the optical and electronic properties of the polymers were influenced by the different comonomers. Electrochemical spectroscopy, using square-wave voltammetry, shows that increasing the electron-donating strength of the comonomer will raise the HOMO energy level of the polymer, resulting in a decreased band gap. This result is also manifested by comparing open-circuit voltages from the corresponding laboratory fabricated solar cells. The best performing photovoltaic cell, based on APFO-Green15/[60]PCBM (1 : 4 w/w), reached a J(sc) of 4.2 mA cm(-2), a V-oc of 0.73 V, and a FF of 0.54, giving a PCE of 1.7%.
  • Li, Weiwei, et al. (författare)
  • The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices
  • 2011
  • Ingår i: Organic electronics. - Elsevier Science B.V., Amsterdam.. - 1566-1199. ; 12:9, s. 1544-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • How 1,8-diiodooctane (DIO) enhances performance of polymer solar cells based on polymer HXS-1 and fullerene [6,6]-phenyl C(71)-butyric acid methyl ester (PC(71)BM) from 3.6% to 5.4% is scrutinized with several techniques by comparing devices or blend films spin-coated from dichlorobenzene (DCB) to those from DCB/DIO (97.5:2.5 v/v). Morphology of blend films is examined with atomic force microscopy (AFM), transmission electron microscopy (TEM) and electron tomography (3-D TEM), respectively. Charge generation and recombination is studied with photoluminescence, and charge transport with field effect transistors. The morphology with domain size in 10-20 nm and vertical elongated clusters formed in DIO system is supposed to facilitate charge transport and minimize charge carrier recombination, which are the main reasons for enhancing power conversion efficiency (PCE) from 3.6% (without DIO) to 5.4% (with DIO). Furthermore, a two year inspection shows no significant impact of DIO on the shelf-stability of the solar cells. No visible degradation in the second year indicates that the morphology of the active layers in the devices is relatively stable after initial relaxation in the first year.
  • Zhou, Yi, et al. (författare)
  • Black Polymers in Bulk-Heterojunction Solar Cells
  • 2010
  • Ingår i: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. - Institute of Electrical and Electronics Engineers (IEEE). - 1077-260X. ; 16:6, s. 1565-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • The active materials in polymer solar cells have a decisive role on the performance of the cells. Polymers with extended absorption, i.e., black polymers with absorption covering the whole visible region are desired in order to capture the important parts of the solar irradiation. Different ways of achieving black active materials are discussed and two new alternating polyfluorene (APFO) copolymers with broad absorption, APFO-Black 1 and APFO-Black 2, using two different design strategies are described. The UV-Vis absorption spectra of the polymers extend to approximately 850 nm, and the polymers were used as donors and [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM)[60] or PCBM[70] as acceptors in solar cell devices in various mixing ratios. The best combinations yielded an overall power conversion efficiency of 1.2% for APFO-Black 1 and 1.5% for APFO-Black 2.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy