SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Öberg Åke) ;pers:(Lundström Ingemar)"

Sökning: WFRF:(Öberg Åke) > Lundström Ingemar

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Annika M., et al. (författare)
  • Biosensing of opioids using frog melanophores
  • 2002
  • Ingår i: Biosensors and Bioelectronics. - 0956-5663. ; 17:4, s. 331-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectacular color changes of fishes, frogs and other lower vertebrates are due to the motile activities of specialized pigment containing cells. Pigment cells are interesting for biosensing purposes since they provide an easily monitored physiological phenomenon. Melanophores, containing dark brown melanin pigment granules, constitute an important class of chromatophores. Their melanin-filled pigment granules may be stimulated to undergo rapid dispersion throughout the melanophores (cells appear dark), or aggregation to the center of the melanophores (cells appear light). This simple physiological response can easily be measured in a photometer. Selected G protein coupled receptors can be functionally expressed in cultured frog melanophores. Here, we demonstrate the use of recombinant frog melanophores as a biosensor for the detection of opioids. Melanophores were transfected with the human opioid receptor 3 and used for opiate detection. The response to the opioid receptor agonist morphine and a synthetic opioid peptide was analyzed by absorbance readings in an aggregation assay. It was shown that both agonists caused aggregation of pigment granules in the melanophores, and the cells appeared lighter. The pharmacology of the expressed receptors was very similar to its mammalian counterpart, as evidenced by competitive inhibition by increasing concentrations of the opioid receptor inhibitor naloxone. Transfection of melanophores with selected receptors enables the creation of numerous melanophore biosensors, which respond selectively to certain substances. The melanophore biosensor has potential use for measurement of substances in body fluids such as saliva, blood plasma and urine.
  •  
2.
  • Testorf, Martin, 1972-, et al. (författare)
  • A model for switch-like phenomena in biological systems
  • 2001
  • Ingår i: Biophysical Chemistry. - 0301-4622 .- 1873-4200. ; 94:1-2, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a model for the activity of protein clusters based on a simultaneous desorption of an activator (agonist, substrate molecule, etc.) and an inactivator (antagonist, inhibitor, etc.) caused by the collision or interaction between two effector molecules (e.g. receptors, enzymes). This model gives rise to switch-like dose–response curves, which are difficult to explain by ordinary co-operativity. It fits with recent experimental results obtained on single cells. Some other interesting aspects of the model are also pointed out. The model is similar to the model used to explain steep ‘dose–response curves’ in heterogeneous catalysis, caused by the reaction between two different molecules or atoms on the surface of the catalyst.
  •  
3.
  • Testorf, Martin, 1972- (författare)
  • Melanophores : cell biophysics and sensor applications
  • 2001
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with studies of melanophores and melanosomes by means of a physical approach. Melanophores are pigment cells that give the black colour to many vertebrates, e.g. fishes, frogs, and reptiles. Covering large areas of the skin, these cells are approximately 0.1 mm in diameter, and they contain black pigment granules called melanosomes.The geometry and the electric charge of isolated melanosomes were two physical properties that were studied. The electric charge was measured by electrophoresis and was found to be (-1.7 ± 0.2)·10-16 Coulomb in average. The geometry of melanosomes was measured using Scanning Force Microscopy, SFM, and resulted in an ellipsoidal shape with an average major diameter of 840 ± 20 nm.Under nervous and hormonal control, melanophores rearrange the intracellular melanosomes from a scattered distribution, called dispersed, to a state where all melanosomes are accumulated in the cell centre, called the aggregated state. In this way, melanophores change from black towards transparent. This gives an animal the ability to change not only between being pale or dark, but also between different colours by using melanophores to cover and uncover the colours of different types of pigment cells from underlying layers.The volume of melanosomes was measured with SFM. This study resulted in a difference of 18% when individual melanosomes from aggregated and dispersed melanophores were measured separately.Magnetic field exposure of melanophores has been reported to affect the aggregation. However, contradicting results are presented in the literature. To clarify the possible effect of magnetic fields on melanophores, experiments by aggregating fish melanophores under exposure to strong (8 and 14 Tesla), homogenous, static magnetic fields were carried out. Both the magnetic field-induced Lorentz force on the charged melanosomes and the reorientation of the cytoskeleton were considered as possible explanations of any effects. Whenfield experiments were compared to control experiments with zero field, no difference in aggregation levels were found. However, a more irregular speed of aggregation was seen in the 8 Tesla field than in the control experiments.A theoretical model was developed to explain switch-like responses in biological systems. A switch-like response to a graded stimulation was sometimes seen in the case of melanophores but was shown not to have a very large so-called Hill coefficient. The model is simple in its approach. It may be applied to general phenomena and is based on the assumption of a simultaneous desorption of an activator (agonist; substrate molecule; ... ) and an inactivator (antagonist, inhibitor; ... ) caused by a collision or interaction between two effector molecules (e.g. receptors or enzymes).Melanosomes are also found in the human body and have a remarkably capacity to bind other molecules. A well-established forensic application of this is to detect (illegal) drugs that have bound to melanosomes in hair shafts. So far this application is only qualitative. This thesis includes a characterisation of the binding of flunitrazepam to melanin. Flunitrazepam is the active substance of Rohypnol, which is a sedative that is illegal in several countries and sometimes called the "date-rape-drug".Melanophores are excellent model systems for studies of cellular phenomena. Moreover, melanophores are also interesting in sensing aspects. The change from black to transparent is a highly visible response to substances in their surroundings and has previously been the measurand in melanophore-based biosensors. The physical approach of these studies of melanophores also had the objective of evaluating new biosensor solutions.
  •  
4.
  • Testorf, Martin, 1972-, et al. (författare)
  • The electric charge of pigment granules in pigment cells
  • 2001
  • Ingår i: Biosensors & bioelectronics. - 0956-5663 .- 1873-4235. ; 16:1-2, s. 31-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Black pigment cells called melanophores change colour in response to environmental changes and have lately been studied as promising biosensors. To further elucidate the intracellular processes involved in the colour changes of these cells, and to find optimal biosensing principles, the electric charge of intracellular pigment granules, melanosomes, has been determined in vitro by electrophoresis. Melanosomes from the two extreme states in the cell colour change (aggregated and dispersed melanosomes) were measured. The charge was found to be −1.5·10−16 and −1.7·10−16 C, aggregated and dispersed melanosomes, respectively, without significant difference between the two conditions. This charge is of the same order of magnitude as the one of 1000 electrons. The origin of the melanosome charge, and the use of these findings in new biosensor principles, is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy