SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Önfelt Björn) ;pers:(Christakou Athanasia)"

Sökning: WFRF:(Önfelt Björn) > Christakou Athanasia

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christakou, Athanasia, et al. (författare)
  • Characterization of natural killer cell immune surveillance against solid liver tumors
  • 2015
  • Ingår i: MicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - : Chemical and Biological Microsystems Society. - 9780979806483 ; , s. 915-917
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate a method for investigating natural killer (NK) cell aggression against ultrasound-assisted human hepatocellular carcinoma (HCC) HepG2 solid tumors in a multi-well microdevice. We quantify the activity of human primary IL-2 activated NK cells against HepG2 tumors for up to five days and we present the correlation between NK cell numbers versus average tumor volume and final tumor outcome (growth or defeat). We suggest future applications on formation of tumors originated from primary tumors cells and other tumor components as well as primary NK originating from the patient for use in personalized immunotherapy.
  •  
2.
  • Christakou, Athanasia. E., et al. (författare)
  • Aggregation and long-term positioning of cells by ultrasound in a multi-well microchip for high-resolution imaging of the natural killer cell immune synapse
  • 2011
  • Ingår i: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011. - 9781618395955 ; , s. 329-331
  • Konferensbidrag (refereegranskat)abstract
    • In this study we investigate the ability of Natural Killer (NK) cells to form ultrasound-mediated intercellular contacts with target cells in a multi-well microdevice by high-resolution confocal-microscopy imaging of inhibitory immune synapses. Furthermore, we compare the NK-Target cell cluster migration with and without ultrasound actuation. Experiments indicate that clusters of cells are positioned and maintained centered in the wells for 17 hours when they are exposed continuously to ultrasound. Our system can be used for both screening high numbers of events in low resolution and also for high resolution imaging of long term cell-cell interactions.
  •  
3.
  • Christakou, Athanasia E., et al. (författare)
  • Characterization of natural killer cells' cytotoxic heterogeneity using an array of sono-cages
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - : Chemical and Biological Microsystems Society. - 9780979806452 ; , s. 1555-1557
  • Konferensbidrag (refereegranskat)abstract
    • Using a multi-well device as an array of sono-cages for single cell analysis, we quantify for the first time the heterogeneity of natural killer (NK) cells' cytotoxic response against cancer cells. We report a fraction of inactive NK cells within the tested population (36%), as well as the existence of few 'serial killers' that eliminate up to six targets during 4 hours. We also characterize the multi-well acoustic device in terms of trapping efficiency at different actuation voltages, using adherent and non-adherent cell lines. We show that the acoustic forces applied on the cells can be compared to forces of biological processes (i.e. cell adherence).
  •  
4.
  • Christakou, Athanasia E., et al. (författare)
  • Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity
  • 2013
  • Ingår i: Integrative Biology. - : Oxford University Press (OUP). - 1757-9694 .- 1757-9708. ; 5:4, s. 712-719
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cells kill virus-infected or cancer cells through the release of cytotoxic granules into a tight intercellular contact. NK cell populations comprise individual cells with varying sensitivity to distinct input signals, leading to disparate responses. To resolve this NK cell heterogeneity, we have designed a novel assay based on ultrasound-assisted cell-cell aggregation in a multiwell chip allowing high-resolution time-lapse imaging of one hundred NK-target cell interactions in parallel. Studying human NK cells' ability to kill MHC class I deficient tumor cells, we show that approximately two thirds of the NK cells display cytotoxicity, with some NK cells being particularly active, killing up to six target cells during the assay. We also report that simultaneous interaction with several susceptible target cells increases the cytotoxic responsiveness of NK cells, which could be coupled to a previously unknown regulatory mechanism with implications for NK-mediated tumor elimination.
  •  
5.
  • Christakou, Athanasia E., et al. (författare)
  • Solid tumor spheroid formation by temperature-controlled high voltage ultrasound in a multi-well microdevice
  • 2014
  • Ingår i: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014. - : Chemical and Biological Microsystems SocietyChemical and Biological Microsystems Society. - 9780979806476 ; , s. 573-575
  • Konferensbidrag (refereegranskat)abstract
    • In the present work we demonstrate effective 3D growth of human hepatocellular carcinoma (HCC) HepG2 cell spheroids in parallel in a multi-well microdevice actuated with high voltage ultrasound in a temperature-controlled system. We compare the spheroid formation during continuous ultrasound exposure for one week where we formed spheroids in 59% of the wells, with the spheroid formation without ultrasound actuation, where we obtained 0% spheroids. Furthermore, we present an application of the tumor spheroids for investigating natural killer (NK) cells behavior against solid tumors.
  •  
6.
  •  
7.
  •  
8.
  • Christakou, Athanasia, et al. (författare)
  • Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells
  • 2015
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 15:15, s. 3222-31
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a simple method for three-dimensional (3D) cell culture controlled by ultrasonic standing waves in a multi-well microplate. The method gently arranges cells in a suspension into a single aggregate in each well of the microplate and, by this, nucleates 3D tissue-like cell growth for culture times between two and seven days. The microplate device is compatible with both high-resolution optical microscopy and maintenance in a standard cell incubator. The result is a scaffold- and coating-free method for 3D cell culture that can be used for controlling the cellular architecture, as well as the cellular and molecular composition of the microenvironment in and around the formed cell structures. We demonstrate the parallel production of one hundred synthetic 3D solid tumors comprising up to thousands of human hepatocellular carcinoma (HCC) HepG2 cells, we characterize the tumor structure by high-resolution optical microscopy, and we monitor the functional behavior of natural killer (NK) cells migrating, docking and interacting with the tumor model during culture. Our results show that the method can be used for determining the collective ability of a given number of NK cells to defeat a solid tumor having a certain size, shape and composition. The ultrasound-based method itself is generic and can meet any demand from applications where it is advantageous to monitor cell culture from production to analysis of 3D tissue or tumor models using microscopy in one single microplate device.
  •  
9.
  • Forslund, E., et al. (författare)
  • Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations
  • 2012
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 3:OCT, s. 300-
  • Tidskriftsartikel (refereegranskat)abstract
    • Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended periods of time. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells.This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g., conjugation, immune synapse formation, and cytotoxic events.The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at the population level.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy