SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Önfelt Björn) ;pers:(Malmberg Karl Johan)"

Sökning: WFRF:(Önfelt Björn) > Malmberg Karl Johan

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Forslund, Elin, et al. (författare)
  • Microchip-Based Single-Cell Imaging Reveals That CD56(dim) CD57(-)KIR(-)NKG2A(+) NK Cells Have More Dynamic Migration Associated with Increased Target Cell Conjugation and Probability of Killing Compared to CD56(dim)CD57(-)KIR(-)NKG2A(-) NK Cells
  • 2015
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 195:7, s. 3374-3381
  • Tidskriftsartikel (refereegranskat)abstract
    • NK cells are functionally educated by self-MHC specific receptors, including the inhibitory killer cell Ig-like receptors (KIRs) and the lectin-like CD94/NKG2A heterodimer. Little is known about how NK cell education influences qualitative aspects of cytotoxicity such as migration behavior and efficacy of activation and killing at the single-cell level. In this study, we have compared the behavior of FACS-sorted CD56(dim)CD57(-)KIR(-)NKG2A(+) (NKG2A(+)) and CD56(dim)CD57(-)KIR(-)NKG2A(+) (lacking inhibitory receptors; IR-) human NK cells by quantifying migration, cytotoxicity, and contact dynamics using microchip-based live cell imaging. NKG2A(+) NK cells displayed a more dynamic migration behavior and made more contacts with target cells than IR-NK cells. NKG2A(+) NK cells also more frequently killed the target cells once a conjugate had been formed. NK cells with serial killing capacity were primarily found among NKG2A(+) NK cells. Conjugates involving IR- NK cells were generally more short-lived and IR- NK cells did not become activated to the same extent as NKG2A(+) NK cells when in contact with target cells, as evident by their reduced spreading response. In contrast, NKG2A(+) and IR- NK cells showed similar dynamics in terms of duration of conjugation periods and NK cell spreading response in conjugates that led to killing. Taken together, these observations suggest that the high killing capacity of NKG2A(+) NK cells is linked to processes regulating events in the recognition phase of NK-target cell contact rather than events after cytotoxicity has been triggered.
  •  
3.
  • Hammer, Quirin, et al. (författare)
  • Combined Genetic Ablation of CD54 and CD58 in CAR Engineered Cytotoxic Lymphocytes Effectively Averts Allogeneic Immune Cell Rejection
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:Supplement 1, s. 1165-1166
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Allogeneic cell therapies hold promise to be cost effective with scaled manufacturing for multi-dosing and on-demand off-the-shelf availability. A critical consideration for allogeneic cell products is their ability to persist, maintain function and avoid rejection by the patient's immune system. Genetic knockout (KO) of beta-2-microglobulin (B2M) leads to complete loss of cell-surface human leukocyte antigen (HLA) class I expression and efficiently abrogates CD8+ T-cell reactivity. However, loss of HLA class I triggers NK cell-mediated missing-self recognition and manipulation of B2M must therefore be combined with other immune-modulating strategies to limit recipient NK cell reactivity.We hypothesized that rejection by the patient's immune system can be diminished in primary CAR T cells, iPSC-derived T (iT) and NK (iNK) cells by reverse-engineering common tumor escape mechanisms. The adhesion molecules CD54 and CD58 are both present at the target cell side of the immune synapse, and loss of either of these molecules have previously been reported to elicit immune escape. Here, we show that the combined deletion of CD54 and CD58 in allogeneic immune effector cells makes them resistant to rejection by recipient immune cells through unidirectional reduced synapse formation (Figure 1A).HLA class I down-regulation by B2M silencing in primary T and NK cells triggered potent cytotoxicity by resting allogeneic NK cells. This response was mostly driven by educated NK cells expressing either NKG2A or killer cell immunoglobulin-like receptors (KIR) binding to HLA-E and HLA-C, respectively. However, over-expression of HLA-E or single HLA-C ligands in a K562 screening model only shut down the specific response of the NK cell subset carrying the cognate inhibitory receptor, resulting in only partial resistance to NK cells at the bulk level. Notably, the introduction of HLA-E was particularly detrimental in donors with expanded NKG2C+ NK cell subsets, due to its stimulatory effect through the activating NKG2C receptor. In contrast, combined deletion of CD54 and CD58 in target cells uniquely decreased the response of all tested NK cell subsets and showed universal reduction across NK cell populations from 18 healthy donors (Figure 1B). To delineate the mechanisms behind the increased resistance of target cells carrying these edits, we studied NK cell-target cell interactions at the single cell level by confocal microscopy in microchips. Allogeneic NK cells formed fewer conjugates and failed to form productive immune synapses with CD54-/-CD58-/- target cells, supporting the notion that they are more resistant to NK-cell mediated killing by unidirectional altered adhesion.We next introduced these edits in primary B2M-/- T cells engineered to express a second generation CAR19 from the TRAC locus. Corroborating the K562 screen, CD54-/-CD58-/-B2M-/- CAR-T cells had a selective survival advantage over B2M-/- CAR T cells and HLA-E-over-expressing B2M-/- CAR T cells in conventional mixed lymphocyte reaction (MLR) assays in vitro. Furthermore, we established an in vivo model to probe the effect of different genetic edits on the persistence of allogeneic cell therapy products. To this end, a mixed population of B2M-/- CAR T cells additionally bearing either CD54 and/or CD58 KO, HLA-E over-expression, or no further edits were infused into mice harboring allogeneic healthy donor PBMC. We found that CD54-/-CD58-/-B2M-/- CAR T cells had significantly better in vivo persistence compared to both B2M-/- CAR T cells and HLA-E+B2M-/- CAR T cells in the presence of PBMC from healthy donors (Figure 1B).Although multiplexed editing is feasible in primary CAR T cells, the iPSC platform has an unmatched capacity for homogenously introducing multiple immune-evasion strategies for off-the-shelf cell therapy. Similar to primary CAR T cells, multiplexed edited CD54-/-CD58-/-B2M-/-CIITA-/- iNK cells showed normal growth kinetics and were resistant to rejection by activated allogeneic NK cells in MLR assays.Together, these data demonstrate that reverse-engineering of common tumor escape mechanisms, which render target cells less susceptible to immune synapse formation, is an effective strategy to avert immune rejection of allogeneic CAR T and iPSC-derived CAR NK cells.
  •  
4.
  • Hammer, Quirin, et al. (författare)
  • Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A significant barrier to the broad clinical implementation of allogeneic cell therapies is rejection of the allogeneic cells by the recipient immune system. Silencing of β-2-microglobulin (B2M) expression is a commonly employed strategy to evade T cell mediated rejection; however, the absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesionligands CD54 and CD58 on allogeneic cells dampens recipient NK cell reactivityindependent of NK cell sub-population and inhibitory receptor expression. Additionally,genetic ablation of CD54 and CD58 in B2M-deficient allogeneic CAR T cells andinduced pluripotent stem cell-derived NK (iPSC-NK) cells reduces their susceptibility to rejection by recipient NK cells both in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data show that genetic ablation of adhesion ligands effectively mitigates rejection of allogeneic immune cells, enabling the generation of rejection-resistant allogeneic cell products.
  •  
5.
  • Haroun-Izquierdo, Alvaro, et al. (författare)
  • Adaptive single-KIR(+)NKG2C(+) NK cells expanded from select superdonors show potent missing-self reactivity and efficiently control HLA-mismatched acute myeloid leukemia
  • 2022
  • Ingår i: Journal for ImmunoTherapy of Cancer. - : BMJ. - 2051-1426. ; 10:11, s. e005577-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNatural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)(+)NKG2C(+) adaptive NK cells to maximize missing-self reactivity.MethodsWe developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML.ResultsADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45(dim) blast subtypes.ConclusionsThese preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.
  •  
6.
  • Oei, Vincent Yi Sheng, et al. (författare)
  • Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors
  • 2018
  • Ingår i: CANCER IMMUNOLOGY RESEARCH. - : AMER ASSOC CANCER RESEARCH. - 2326-6066 .- 2326-6074. ; 6:4, s. 467-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19(+) targets, and maintained their intrinsic degranulation response toward CD19(-) K562 cells. The response of redirected NK-cell subsets against CD19(+) targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA-specific KIR(s), displayed superior ability to kill CD19(+), HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells.
  •  
7.
  • Philippon, Camille, et al. (författare)
  • Allelic variation of KIR and HLA tunes the cytolytic payload and determines functional hierarchy of NK cell repertoires
  • 2023
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 7:16, s. 4492-4504
  • Tidskriftsartikel (refereegranskat)abstract
    • The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.
  •  
8.
  • Sandoz, Patrick, et al. (författare)
  • Modulation of lytic molecules restrain serial killing in γδ T lymphocytes
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • γδ T cells play a pivotal role in protection against various types of infections and tumours, from early childhood on and throughout life. They consist of several subsets characterised by adaptive and innate-like functions, with Vγ9Vδ2 being the largest subset in human peripheral blood. Although these cells show signs of cytotoxicity, their modus operandi remains poorly understood. Here we explore, using live single-cell imaging, the cytotoxic functions of γδ T cells upon interactions with tumour target cells with high temporal and spatial resolution. While γδ T cell killing is dominated by degranulation, the availability of lytic molecules appears tightly regulated in time and space. In particular, the limited co-occurrence of granzyme B and perforin restrains serial killing of tumour cells by γδ T cells. Thus, our data provide new insights into the cytotoxic arsenal and functions of γδ T cells, which may guide the development of more efficient γδ T cell based adoptive immunotherapies.
  •  
9.
  • van Ooijen, Hanna (författare)
  • Mechanisms regulating Natural Killer Cell Cytotoxicity
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the last 50 years, cancer survival rates have steadily improved thanks to earlier detection and novel treatment regimens. For example, drugs that act on the immune system, so-called immunotherapy, have drastically increased the prospect of survival for patients suffering from some of the most aggressive cancer types including advanced malignant melanoma. Nevertheless, many patients still do not respond to neither traditional treatments or immunotherapy. Expanding the knowledge of immune cell function, and of how the immune system is dysregulated in cancer, will hence be fundamental for the development of more efficient treatment strategies.Natural Killer (NK) cells, a type of cytotoxic innate immune cell, have been identified as a target for immunotherapy due to their capacity to recognize and destroy cancer cells. Tumor-infiltrating NK cells often display reduced functionality, and therapies targeting NK cells therefore aim at enhancing their anti-tumor activity. However, the responses of individual NK cells are highly heterogeneous, and although some cells efficiently destroy harmful targets, others do not.Both functionality and phenotype are most efficiently studied using single-cell approaches, as these can resolve differences within heterogenous populations. In immunology, flow cytometry has been the golden standard for single-cell assessment, but this method has limited applicability when studying dynamic processes. For this purpose, imaging-based methods are a superior alternative, especially when combined with spatial confinement of single cells.In this thesis, I describe the development and application of microscopy-based approaches for the study of single NK cell functional responses. Specifically, I have sought to increase our understanding of the mechanisms regulating NK cell cytotoxicity. In Paper 1, we developed a plastic microwell chip for the investigation of the function of NK cells at the single-cell level. The platform was used to examine how NK cell cytotoxicity is negatively affected by several factors present in the tumor microenvironment, including limited glucose and glutamine availability. In Paper 2, we explored the cytotoxic mechanisms deployed by individual NK cells during sequential killing. We showed that single NK cells switch from almost exclusively applying degranulation in early killing events, to using death ligand engagement for their final kill. In Paper 3, we further investigated the factors prohibiting NK cells from continued killing, during both natural ligand and antibody-mediated cytotoxicity. We discovered that most NK cells retain a large pool of granzyme B-positive lytic granules after they have ceased killing, but calcium signaling is maintained only in NK cells that are capable of sequential killing. In Paper 4, we explored ways of improving the therapeutic efficacy of in vitro-activated immune cells by avoiding their rejection by the host immune system. We showed that the combined deletion of CD54 and CD58 in grafted cells resulted in a reduced recognition by host NK cells, thereby improving graft survival.In summary, the work presented in this thesis demonstrates the importance of single-cell methods for characterizing immune cell function. Such advancements are crucial for the continued development of immunotherapies and will hopefully contribute to further improved chances for cancer patients in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy