SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aalto Susanne 1964) ;lar1:(su)"

Sökning: WFRF:(Aalto Susanne 1964) > Stockholms universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamo, Angela, et al. (författare)
  • Star cluster formation in the most extreme environments: Insights from the HiPEEC survey
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:3, s. 3267-3294
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Hubble imaging Probe of Extreme Environments and Clusters (HiPEEC) survey. We fit HST NUV to NIR broad-band and H α fluxes to derive star cluster ages, masses, and extinctions and determine the star formation rate (SFR) of six merging galaxies. These systems are excellent laboratories to trace cluster formation under extreme gas physical conditions, rare in the local Universe, but typical for star-forming galaxies at cosmic noon. We detect clusters with ages of 1-500 Myr and masses that exceed 107 M☉. The recent cluster formation history and their distribution within the host galaxies suggest that systems such as NGC 34, NGC 1614, and NGC 4194 are close to their final coalescing phase, while NGC 3256, NGC 3690, and NGC 6052 are at an earlier/intermediate stage. A Bayesian analysis of the cluster mass function in the age interval 1-100 Myr provides strong evidence in four of the six galaxies that an exponentially truncated power law better describes the observed mass distributions. For two galaxies, the fits are inconclusive due to low number statistics. We determine power-law slopes β ∼ −1.5 to −2.0 and truncation masses, Mc, between 106 and a few times 107 M☉, among the highest values reported in the literature. Advanced mergers have higher Mc than early/intermediate merger stage galaxies, suggesting rapid changes in the dense gas conditions during the merger. We compare the total stellar mass in clusters to the SFR of the galaxy, finding that these systems are among the most efficient environments to form star clusters in the local Universe.
  •  
2.
  • Belete, A. Bewketu, et al. (författare)
  • Molecular gas kinematics in the nuclear region of nearby Seyfert galaxies with ALMA
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The study of the distribution, morphology, and kinematics of cold molecular gas in the nuclear and circumnuclear regions of active galactic nuclei (AGNs) helps to characterise and hence to quantify the impact of the AGNs on the host galaxy over its lifetime. Aims. We present the analysis of the molecular gas in the nuclear regions of three Seyfert galaxies, NGC 4968, NGC 4845, and MCG-06-30-15, using Atacama Large sub-Millimetre Array (ALMA) observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (∼1 kpc) region and thereby to probe nuclear fueling and feedback of AGNs. Methods. We used two different softwares, namely the 3D-Based Analysis of Rotating Object via Line Observations and DiskFit, to model the kinematics of the gas in the molecular disc, and thereby to determine the gas rotation and any kinematical perturbations. Results. Circular motions dominate the kinematics of the molecular gas in the central discs, mainly in NGC 4845 and MCG-06-30-15; however there is clear evidence of non-circular motions in the central (∼1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968, mainly along the minor kinematic axis, with a velocity ∼115 km s-1. Of all DiskFit models, the bisymmetric model is found to give the best fit for NGC 4968 and NGC 4845, indicating that the observed non-circular motions in the inner disc of these galaxies could result from the nuclear barred structure, where the gas streams in elliptical orbits aligned along the bar. If the dynamics of NGC 4968 is modelled as a corotation pattern just outside of the bar, the bar pattern speed becomes ωb = 52 km s-1 kpc-1; the corotation is set at 3.5 kpc; and the inner Lindblad resonance (ILR) ring is R  =  300 pc, corresponding to the CO emission ring. In the NGC 4968 galaxy, the torques exerted on the gas by the bar are positive in the centre, within the gas nuclear ring, and negative outside. This shows that the gas is transiently trapped in the ILR. The comparison of the CO intensity maps with the map of the cold dust emission shows an absence of CO in the centre of NGC 4968; also the dust distribution and CO emission in and around the centre of NGC 4845 have similar extensions. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) emissions have extended distributions. Allowing the CO-to-H2 conversion factor αCO between 0.8 and 3.2, which is typical of nearby galaxies of the same type, the molecular mass M(H2) is estimated to be ∼3  -  12  ×  107  M⊙ (NGC 4968), ∼9  -  36  ×  107  M⊙ (NGC 4845), and ∼1  -  4  ×  107  M⊙ (MCG-06-30-15). Conclusions. We conclude that the observed non-circular motions in the molecular disc of NGC 4968 and likely those seen in NGC 4845 are due to the presence of the bar in the nuclear region. We discuss the possibility that the observed pattern in the kinematics might be a consequence of the presence of AGNs, and this might be the case for NGC 4845. At the current spectral and spatial resolution and sensitivity, we cannot claim any strong evidence in these sources of the long sought feedback or feeding effect resulting from the presence of AGNs.
  •  
3.
  • Fathi, Kambiz, et al. (författare)
  • LOCAL INSTABILITY SIGNATURES IN ALMA OBSERVATIONS OF DENSE GAS IN NGC 7469
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213 .- 1538-4357 .- 0004-637X. ; 806:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an unprecedented measurement of the disk stability and local instability scales in the luminous infrared Seyfert 1 host, NGC 7469, based on ALMA observations of dense gas tracers and with a synthesized beam of 165 x 132 pc. While we confirm that non-circular motions are not significant in redistributing the dense interstellar gas in this galaxy, we find compelling evidence that the dense gas is a suitable tracer for studying the origin of its intensely high-mass star-forming ringlike structure. Our derived disk stability parameter Q accounts for a thick disk structure, and its value falls below unity at the radii in which intense star formation is found. Furthermore, we derive the characteristic instability scale lambda(c) and find a striking agreement between our measured scale of similar to 180 pc and the typical sizes of individual complexes of young and massive star clusters seen in high-resolution images.
  •  
4.
  • König, Sabine, 1983, et al. (författare)
  • Major impact from a minor merger The extraordinary hot molecular gas flow in the Eye of the NGC 4194 Medusa galaxy
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound - about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales - from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1-0 with NOEMA and of CO 3-2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1" resolution. In particular, we compare the distribution of these dense gas tracers with CO 2-1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1-0, and CO 3-2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the "Eye of the Medusa", an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO(+ )is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO 3-2/2-1 brightness temperature ratio inside "the Eye" is similar to 2.5 - the highest ratio found so far - implying optically thin CO emission. The CO 2-1/HCN 1-0 (similar to 9.8) and CO 2-1/HCO+ 1-0 (similar to 7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO 3-1/2-1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H-2) >10(4) cm(-3) ). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form new stars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy