SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aalto Susanne 1964) ;pers:(Meijerink R.)"

Sökning: WFRF:(Aalto Susanne 1964) > Meijerink R.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aalto, Susanne, 1964, et al. (författare)
  • H3O+ line emission from starbursts and AGNs
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The H3O+ molecule probes the chemistry and the ionization rate of dense circumnuclear gas in galaxies. Aims. We use the H3O+ molecule to investigate the impact of starburst and AGN activity on the chemistry of the molecular interstellar medium. Methods. Using the JCMT, we have observed the 3(2)(+)-2(2)(-) 364 GHz line of p-H3O+ towards the centres of seven active galaxies. Results. We have detected p-H3O+ towards IC 342, NGC 253, NGC 1068, NGC 4418, and NGC 6240. Upper limits were obtained for IRAS 15250 and Arp 299. We find large H3O+ abundances (N(H3O+)/N(H-2) greater than or similar to 10(-8)) in all detected galaxies apart from in IC 342 where it is about one order of magnitude lower. We note, however, that uncertainties in N(H3O+) may be significant due to lack of definite information on source size and excitation. We furthermore compare the derived N(H3O+) with N(HCO+) and find that the H3O+ to HCO+ column density ratio is large in NGC 1068 ( 24), moderate in NGC 4418 and NGC 253 ( 4-5), slightly less than unity in NGC 6240 ( 0.7) and lowest in IC 342 ( 0.2-0.6). We compare our results with models of X-ray and photon dominated regions ( XDRs and PDRs). Conclusions. For IC 342 we find that a starburst PDR chemistry can explain the observed H3O+ abundance. For the other galaxies, the large H3O+ columns are generally consistent with XDR models. In particular for NGC 1068 the elevated N(H3O+)/N(HCO+) ratio suggests a low column density XDR. For NGC 4418 however, large HC3N abundances are inconsistent with the XDR interpretation. An alternative possibility is that H3O+ forms through H2O evaporating off dust grains and reacting with HCO+ in warm, dense gas. This scenario could also potentially fit the results for NGC 253. Further studies of the excitation and distribution of H3O+-aswell as Herschel observations of water abundances - will help to further constrain the models.
  •  
2.
  • Gonzalez-Alfonso, E., et al. (författare)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
3.
  • Gonzalez-Alfonso, E., et al. (författare)
  • HIGH-LYING OH ABSORPTION, [C II] DEFICITS, AND EXTREME LFIR/MH2 RATIOS IN GALAXIES
  • 2015
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 800:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/PACS observations of 29 local (ultra) luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 mu m.3/2 J = 9/2-7/2 line (Weq(OH65)) with lower level energy Elow 300 K, is anticorrelated with the [Cii] 158 mu m line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 mu m far-infrared color. While all sources are in the active LIR/MH2 > 50L /M mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at LFIR/MH2 100L /M . In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 mu m absorption. Combined with observations of the OH 71 mu m.1/2 J = 7/2-5/2 doublet (Elow 415 K), radiative transfer models characterized by the equivalent dust temperature, Tdust, and the continuum optical depth at 100 mu m, t100, indicate that strong [C ii] 158 mu m deficits are associated with far-IR thick (t100 0.7, NH 1024 cm-2), warm (Tdust 60 K) structures where the OH 65 mu m absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high LFIR/MH2 ratios and columns, the presence of these structures is expected to give rise to strong [C ii] deficits. Weq(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is 30%-50% in sources with high Weq(OH65). Sources with high Weq(OH65) have surface densities of both LIR and MH2 higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum) nuclear starburst-AGN co-evolution.
  •  
4.
  • Greve, T. R., et al. (författare)
  • Star Formation Relations and CO-Spectral Line Energy Distributions Across the J-Ladder and Redshift
  • 2014
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 794:2, s. Art. no. 142-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., a similar or equal to 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (beta similar to 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (similar to 100 K) and dense (>10(4) cm(-3)) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.
  •  
5.
  • Meijerink, R., et al. (författare)
  • Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy
  • 2013
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 762:2, s. L16-L20
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 linesare detected, including CO J = 4−3 through J = 13−12, 6 H2O rotational lines, and [C i] and [N ii] fine-structurelines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the COladdersof NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for theexcitation of the gas in NGC 6240.We applied both C and J shock models to the H2 v = 1–0 S(1) and v = 2–1 S(1)lines and the CO rotational ladder. The CO ladder is best reproduced by amodel with shock velocity vs = 10 km s−1and a pre-shock density nH = 5 × 104 cm−3. We find that the solution best fitting the H2 lines is degenerate. The shock velocities and number densities range between vs = 17–47 km s−1 and nH = 107–5×104 cm−3, respectively.The H2 lines thus need a much more powerful shock than the CO lines.We deduce that most of the gas is currently moderately stirred up by slow (10 km s−1) shocks while only a small fraction (1%) of the interstellar mediumis exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.
  •  
6.
  • Rosenberg, M. J. F., et al. (författare)
  • The Herschel Comprehensive (U)lirg Emission Survey (Hercules): Co Ladders, Fine Structure Lines, and Neutral Gas Cooling
  • 2015
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 801:2
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot)
  •  
7.
  • van der Tak, F.F.S., et al. (författare)
  • Detection of extragalactic H3O
  • 2008
  • Ingår i: Astronomy & Astrophysics. ; 477, s. L5-L8
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • van der Tak, F.F.S., et al. (författare)
  • Extragalactic H3O^+: Some Consequences
  • 2008
  • Ingår i: "Far-Infrared Workshop 2007", EAS Publication Series, eds. C. Kramer, S. Aalto, R. Simon, DOI:10.1051/eas:0831022. ; 31, s. 105-109
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We discuss some implications of our recent detection of extragalactic H{3} O{+}: the location of the gas in M 82, the origin of energetic radiation in M 82, and the possible feedback effects of star formation on the cosmic ray flux in galaxies.
  •  
9.
  • van der Werf, P.P., et al. (författare)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
10.
  • Xu, C. K., et al. (författare)
  • ALMA observationsof warm dense gas in NGC 1614-breaking of the star formation law in the central kiloparsec
  • 2015
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 799:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435 mu m dust continuum emission in the central kiloparsec of NGC 1614, a local luminous infrared galaxy at a distance of 67.8 Mpc (1 '' = 329 pc). The CO emission is well resolved by the ALMA beam (0.'' 26x0.'' 20) into a circumnuclear ring, with an integrated flux of f(C O(6-5)) = 898 (+/- 153) Jy km s(-1), which is 63(+/- 12)% of the total CO (6-5) flux measured by Herschel. The molecular ring, located between 100 pc
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy