SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abe C.) ;mspu:(article)"

Search: WFRF:(Abe C.) > Journal article

  • Result 1-10 of 180
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
9.
  • Ching, C. R. K., et al. (author)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 56-82
  • Journal article (peer-reviewed)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 180
Type of publication
Type of content
peer-reviewed (170)
other academic/artistic (9)
pop. science, debate, etc. (1)
Author/Editor
Janson, Markus (32)
Abé, C (30)
Abe, L. (22)
Stein, DJ (21)
Jahanshad, N (20)
Abe, Y (19)
show more...
Benedetti, F (19)
Thompson, PM (19)
Brem, S (18)
Lochner, C (18)
Piras, F (18)
Spalletta, G (18)
Wang, Z. (17)
Abe, S. (17)
Kwon, JS (17)
Venkatasubramanian, ... (17)
van den Heuvel, OA (17)
Yun, JY (17)
Koch, K. (16)
Bollettini, I (16)
Gruner, P (16)
Lazaro, L (16)
Marsh, R (16)
Menchon, JM (16)
Soriano-Mas, C (16)
Feldt, M. (16)
Kudo, Tomoyuki (16)
Abe, Lyu (16)
Guyon, Olivier (16)
Narayanaswamy, JC (15)
Simpson, HB (15)
van Wingen, GA (15)
Knapp, Gillian R. (15)
Serabyn, Eugene (15)
Feldt, Markus (15)
Hashimoto, Jun (15)
Henning, Thomas (15)
Kusakabe, Nobuhiko (15)
Kuzuhara, Masayuki (15)
Grady, Carol A. (15)
Kwon, Jungmi (15)
Thalmann, Christian (15)
Brandner, Wolfgang (15)
Brandt, Timothy D. (15)
Carson, Joseph C. (15)
Goto, Miwa (15)
Hayano, Yutaka (15)
Hayashi, Masahiko (15)
Hayashi, Saeko S. (15)
Hodapp, Klaus W. (15)
show less...
University
Karolinska Institutet (79)
Stockholm University (61)
University of Gothenburg (26)
Lund University (12)
Uppsala University (10)
Linköping University (9)
show more...
Luleå University of Technology (6)
Royal Institute of Technology (5)
Chalmers University of Technology (5)
Umeå University (4)
Linnaeus University (2)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (180)
Research subject (UKÄ/SCB)
Natural sciences (88)
Medical and Health Sciences (35)
Engineering and Technology (2)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view