SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrahamson Magnus) ;pers:(Hall Anders)"

Sökning: WFRF:(Abrahamson Magnus) > Hall Anders

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamson, Magnus, et al. (författare)
  • Modification of cystatin C activity by bacterial proteinases and neutrophil elastase in periodontitis
  • 1997
  • Ingår i: Molecular Pathology. - 1366-8714. ; 50:6, s. 291-297
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To study the interaction between the human cysteine proteinase inhibitor, cystatin C, and proteinases of periodontitis associated bacteria. METHODS: Gingival crevicular fluid samples were collected from discrete periodontitis sites and their cystatin C content was estimated by enzyme linked immunosorbent assay (ELISA). The interaction between cystatin C and proteolytic enzymes from cultured strains of the gingival bacteria Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans was studied by measuring inhibition of enzyme activity against peptidyl substrates, by detection of break down patterns of solid phase coupled and soluble cystatin C, and by N-terminal sequence analysis of cystatin C products resulting from the interactions. RESULTS: Gingival crevicular fluid contained cystatin C at a concentration of approximately 15 nM. Cystatin C did not inhibit the principal thiol stimulated proteinase activity of P gingivalis. Instead, strains of P gingivalis and P intermedia, but not A actinomycetemcomitans, released cystatin C modifying proteinases. Extracts of five P gingivalis and five P intermedia strains all hydrolysed bonds in the N-terminal region of cystatin C at physiological pH values. The modified cystatin C resulting from incubation with one P gingivalis strain was isolated and found to lack the eight most N-terminal residues. The affinity of the modified inhibitor for cathepsin B was 20-fold lower (Ki 5 nM) than that of full length cystatin C. A 50 kDa thiol stimulated proteinase, gingipain R, was isolated from P gingivalis and shown to be responsible for the Arg8-bond hydrolysis in cystatin C. The cathepsin B inhibitory activity of cystatin C incubated with gingival crevicular fluid was rapidly abolished after Val10-bond cleavage by elastase from exudate neutrophils, but cleavage at the gingipain specific Arg8-bond was also demonstrated. CONCLUSIONS: The physiological control of cathepsin B activity is impeded in periodontitis, owing to the release of proteinases from infecting P gingivalis and neutrophils, with a contribution to the tissue destruction seen in periodontitis as a probable consequence.
  •  
2.
  • Balbin, Milagros, et al. (författare)
  • Structural and functional characterization of two allelic variants of human cystatin D sharing a characteristic inhibition spectrum against mammalian cysteine proteinases
  • 1994
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 269:37, s. 23156-23162
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cystatin D is a novel member of the cystatin superfamily of cysteine proteinase inhibitors present in saliva and tears. Two alleles of the cystatin D gene (CST5), encoding protein variants with either Cys or Arg as residue 26 in their 122-residue polypeptide chains, are present in the population. Expression of the two alleles was investigated by immunochemical analyses of the secreted cystatin D in saliva from individuals homozygous for each of the two alleles, with results demonstrating that both are expressed at similar levels. The inhibitory characteristics of the two cystatin D variants were studied, by determination of dissociation equilibrium constants (Ki) for their complexes with papain and with the mammalian cysteine proteinases, cathepsins B, H, L, and S. The results demonstrate that 1) cystatin D has a characteristic inhibition profile since it does not inhibit cathepsin B (Ki > 1 microM), and when compared to cystatin C and all other known cystatins it is a much poorer inhibitor of cathepsin L (mean Ki 25 nM) but binds cathepsin H and S relatively tightly (mean Ki values of 8.5 and 0.24 nM, respectively); and 2) the inhibitory activities of the two cystatin D variants are not significantly different, demonstrating that the presence of an extra cysteine residue in the cystatin D molecule affects neither the stability nor the functional activity of the inhibitor, thus explaining the widespread distribution of the Cys26-cystatin D encoding allele in the population. The inhibitory properties displayed by cystatin D suggest that it has a function in saliva as inhibitor of either endogenous or exogenous enzymes with cathepsin S- or H-like properties.
  •  
3.
  • Hall, Anders, et al. (författare)
  • Cystatin C based peptidyl diazomethanes as cysteine proteinase inhibitors: Influence of the peptidyl chain length
  • 1992
  • Ingår i: Journal of Enzyme Inhibition and Medicinal Chemistry. - : Informa UK Limited. - 1475-6374. ; 6:2, s. 113-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The peptidyl diazomethanes Cbz-Gly-CHN2, Boc-Val-Gly-CHN2, H-Leu-Val-Gly-CHN2, Cbz-Leu-Val-Gly-CHN2 and Cbz-Arg-Leu-Val-Gly-CHN2, with peptidyl portions modelled after the proposed cysteine proteinase interacting N-terminal segment of human cystatin C, were synthesized. Their efficiency as cysteine proteinase inhibitors was tested against papain, human cathepsin B and bovine cathepsin B. All, except Cbz-Gly-CHN2, were found to be irreversible inhibitors of the tested enzymes. Each addition of an amino acid residue to their peptidyl portions resulted in an increased inhibition rate of all three enzymes. These data suggest that the arginyl residue of the tetrapeptidyl diazomethane, and also the corresponding arginyl residue in native cystatin C, interact with a S4 substrate pocket subsite of both papain and cathepsin B. The most efficient inhibitor, Cbz-Arg-Leu-Val-Gly-CHN2, inhibited papain and cathepsin B with rate constants of the same order of magnitude as those for L-3-carboxy-trans-2.3-epoxypropionyl-leucylamido-(4-guanidino)butane (E-64). The high water-solubility of Cbz-Arg-Leu-Val-Gly-CHN2 allowing it to be dissolved to molar concentrations without use of non-physiological additives, makes it suitable for in vitro and in vivo cysteine proteinase inhibition studies.
  •  
4.
  • Hall, Anders, et al. (författare)
  • Importance of the evolutionarily conserved glycine residue in the N-terminal region of cystatin C (Gly-11) for cysteine endopeptidase inhibition
  • 1993
  • Ingår i: Biochemical Journal. - 0264-6021. ; 291:1, s. 123-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cystatin C variants in which the evolutionarily conserved Gly-11 residue has been replaced by residues with positively charged (Arg), negatively charged (Glu), bulky hydrophobic (Trp), or small (Ser or Ala) side-chains have been produced by site-directed mutagenesis and expression in Escherichia coli. The five variants were isolated and structurally verified. Their inhibitory properties were compared with those of wild-type recombinant cystatin C by determination of the equilibrium constants for dissociation (Ki) of their complexes with the cysteine endopeptidases papain and human cathepsin B and with the cysteine exopeptidase dipeptidyl peptidase I. The Ser-11 and Ala-11 cystatin C variants displayed Ki values for the two endopeptidases that were approx. 20-fold higher than those of wild-type cystatin C, while the corresponding values for the Trp-11. Arg-11 and Glu-11 variants were increased by a factor of about 2000. In contrast, the Ki values for the interactions of all five variants with the exopeptidase differed from that of wild-type cystatin C by a factor of less than 10. Wild-type cystatin C and the Ser-11, Ala-11 and Glu-11 variants were incubated with neutrophil elastase, which in all cases resulted in the rapid hydrolysis of a single peptide bond, between amino acid residues 10 and 11. The Ki values for the interactions with papain of these three N-terminal-decapeptide-lacking cystatin C variants were 20-50 nM, just one order of magnitude higher than the value for N-terminally truncated wild-type cystatin C, which in turn was similar to the corresponding values for the full-length Glu-11, Arg-11 and Trp-11 variants. These data indicate that the crucial feature of the conserved Gly residue in position 11 of wild-type cystatin C is that this residue, devoid of a side-chain, will allow the N-terminal segment of cystatin C to adopt a conformation suitable for interaction with the substrate-binding pockets of cysteine endopeptidases, resulting in high-affinity binding and efficient inhibition. The functional properties of the remaining part of the proteinase contact area, which is built from more C-terminal inhibitor segments, are not significantly affected even when amino acids with bulky or charged side-chains replace the Gly-11 residue of the N-terminal segment.
  •  
5.
  • Hall, Anders, et al. (författare)
  • Structural basis for different inhibitory specificities of human cystatins C and D
  • 1998
  • Ingår i: Biochemistry. - 0006-2960. ; 37:12, s. 4071-4079
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cystatins C and D share almost identical primary structures of two out of the three segments proposed to be of importance for enzyme interactions but have markedly different profiles for inhibition of the target cysteine peptidases, cathepsins B, H, L, and S. To investigate if the N-terminal binding regions of the inhibitors are responsible for the different inhibition profiles, and thereby confer biological selectivity, two hybrid cystatins were produced in Escherichia coli expression systems. In one hybrid, the N-terminal segment of cystatin C was placed on the framework of cystatin D, and the second was engineered with the N-terminal segment of cystatin D on the cystatin C scaffold. Truncated cystatin C and D variants, devoid of their N-terminal segments, were obtained by incubation with glycyl endopeptidase and isolated, in a second approach to assess the importance of the N-terminal binding regions for cystatin function and specificity. The affinities of the four cystatin variants for cathepsins B, H, L, and S were measured. By comparison with corresponding results for wild-type cystatins C and D, it was concluded (1) that both the N-terminal and framework part of the molecules significantly contribute to the observed differences in inhibitory activities of cystatins C and D and (2) that the N-terminal segment of cystatin C increases the inhibitory activity of cystatin D against cathepsin S and cathepsin L but results in decreased activity against cathepsin H. These differences in specificity were explained by the residues interacting with the S2 subsite of peptidases (Val- and Ala-10 in cystatin C and D, respectively). Also, removal of the N-terminal segment results in total loss of enzyme affinity for cystatin D but not for cystatin C. Therefore, structural differences in the framework parts, as well as in the N-terminal segments, are critical for both inhibitory specificity and potency. Homology modeling was used to identify residues likely responsible for the generally reduced inhibitory potency of cystatin D.
  •  
6.
  • Hall, Anders, et al. (författare)
  • Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases
  • 1995
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 270:10, s. 5115-5121
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural basis for the biological specificity of human cystatin C has been investigated. Cystatin C and other inhibitors belonging to family 2 of the cystatin superfamily interact reversibly with target peptidases, seemingly by independent affinity contributions from a wedge-shaped binding region built from two loop-forming inhibitor segments and a binding region corresponding to the N-terminal segment of the inhibitor. Human cystatin C variants with Gly substitutions for residues Arg-8, Leu-9, and/or Val-10 of the N-terminal binding region, and/or the evolutionarily conserved Trp-106 in the wedge-shaped binding region, were produced by site-directed mutagenesis and Escherichia coli expression. A total of 10 variants were isolated, structurally verified, and compared to wild-type cystatin C with respect to inhibition of the mammalian cysteine peptidases, cathepsins B, H, L, and S. Varying contributions from the N-terminal binding region and the wedge-shaped binding region to cystatin C affinity for the four target peptidases were observed. Interactions from the side chains of residues in the N-terminal binding region and Trp-106 are jointly responsible for the major part of cystatin C affinity for cathepsin L and are also of considerable importance for cathepsin B and H affinity. In contrast, for cathepsin S inhibition these interactions are of lesser significance, as reflected by a Ki value of 10(-8) M for the cystatin C variant devoid of Arg-8, Leu-9, Val-10, and Trp-106 side chains. The side chain of Val-10 is responsible for most of the affinity contribution from the N-terminal binding region, for all four enzymes. The contribution of the Arg-8 side chain is minor, but significant for cystatin C interaction with cathepsin B. The Leu-9 side chain confers selectivity to the inhibition of the target peptidases; it contributes to cathepsin B and L affinity by factors of 200 and 50, respectively, to cathepsin S binding by a factor of 5 only, and results in a 10-fold decreased affinity between cystatin C and cathepsin H.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy