SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrahamson Magnus) ;pers:(Johansson Kjell)"

Sökning: WFRF:(Abrahamson Magnus) > Johansson Kjell

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liljekvist Soltic, Ingela, et al. (författare)
  • Growth of the postnatal rat retina in vitro: Quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins
  • 2003
  • Ingår i: Molecular Vision. - 1090-0535. ; 9:79, s. 657-664
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate whether previously reported changes in protein expression of middle and long (M/L) and short (S) wavelength cone opsin pigments in cultured retina are correlated with changes in their gene expression. Additionally, to elucidate the importance of a functional retinal pigment epithelium for the development of photoreceptor outer segments. Methods: Neonatal rat retinas were maintained in culture for 11 days and either fixed in 4% paraformaldehyde for immunohistochemistry or prepared for RNA extraction, reverse transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR. S-cone and M/L-cone photoreceptors as well as rod photoreceptors were immunohistochemically identified using specific antibodies. Peanut agglutinin (PNA)-lectin histochemistry was used to identify interphotoreceptor matrix associated with cone photoreceptors. Immunolabeling for ED-1 and RPE65 was performed in combination with PNA-lectin staining to examine interactions between photoreceptor cells and the retinal pigment epithelium. Relative estimates of mRNA expression levels for M/L-opsin, S-opsin, recoverin, and rhodopsin in normal and cultured retina were determined by using quantitative RT-PCR. Results: Strong immunolabeling for recoverin and rhodopsin accumulated in outer segments as well as photoreceptor somata in vitro. Cultured and normal retinas showed similar relative expression levels of recoverin and rhodopsin mRNA. In cultured rat retina, the density of S-cones was high and M/L-cones could not be immunohistochemically detected. However, M/L-cone photoreceptor mRNA was detectable, but at a fourfold lower level in cultured than in vivo retinas. The S-cone photoreceptor mRNA level was almost twofold lower than in vivo. Retinal pigment epithelium cells in cultured specimens showed no RPE65 immunolabeling, but expressed immunolabeling for ED-1 indicating phagocytic activity of these cells in vitro. Conclusions: We assume that the high density of S-cones and virtually no M/L-cones seen in in vitro retinas might represent an immature stage with numerous S-cones and suppressed transdifferentiation into M/L-cone phenotype. A non-functional relationship between photoreceptor cells and a dysfunctional retinal pigment epithelium may have severe consequences for the development of outer segments.
  •  
2.
  • Wasselius, Johan, et al. (författare)
  • Cystatin C uptake in the eye.
  • 2005
  • Ingår i: Graefe's Archive for Clinical and Experimental Ophthalmology. - : Springer Science and Business Media LLC. - 1435-702X .- 0721-832X. ; 243:6, s. 583-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: As a secreted protein, cystatin C is assumed to play its role in the extracellular compartment, where it can inhibit virtually all cysteine proteases of families C1 ( cathepsin B, L, S) and C13 ( mammalian legumain-related proteases). Since many of its potential target enzymes in the eye reside in intracellular compartments, we sought evidence for a cellular uptake of the inhibitor in ocular tissues. Methods: Fluorescence-labeled human cystatin C was injected intravitreally into normal rat eyes. Ocular tissues were subsequently examined using ELISA, fluorescence microscopy, and immunohistochemistry. Cystatin C uptake was additionally studied in an in vitro retina model. Results: Cystatin C administered intravitreally in vivo is taken up into cells of the corneal endothelium and epithelium, the epithelial cells lining the ciliary processes, and into cells in the neuroretina mostly ganglion cells) and the retinal pigment epithelium. The uptake is demonstrable also in vitro and was, in the neuroretina, found to be a high-affinity system, inhibited by cooling the specimens or by adding the microfilament polymerization inhibitor, cytochalasin D, to the medium. Conclusions: There is an active, temperature-dependent uptake system for cystatin C into several cell types in the cornea, ciliary body, and retina. The cell types that take up cystatin C are generally the same that contain endogenous cystatin C, suggesting that much or all cystatin C seen intracellularly in the normal eye may have been taken up from the surrounding extracellular space. The uptake indicates that the inhibitor may exert biological functions in intracellular compartments. It is also possible that this uptake system may regulate the extracellular levels of cystatin C in the eye.
  •  
3.
  • Wasselius, Johan, et al. (författare)
  • Identification and localization of retinal cystatin C
  • 2001
  • Ingår i: Investigative Ophthalmology & Visual Science. - 1552-5783. ; 42:8, s. 1901-1906
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Cystatin C is a mammalian cysteine protease inhibitor, synthesized in various amounts by many kinds of cells and appearing in most body fluids. There are reports that it may be synthesized in the mammalian retina and that a cysteine protease inhibitor may influence the degradation of photoreceptor outer segment proteins. In the current study cystatin C was identified, quantitated, and localized in mouse, rat, and human retinas. METHODS. Enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR), DNA sequencing, Western blot analysis, and immunohistochemistry have been used on mouse, rat, and human retinas (pigment epithelium included). RESULTS. Cystatin C is present in high concentrations in the normal adult rat retina, as it is throughout its postnatal development. Its concentration increases to a peak at the time when rat pups open their eyes and then remains at a high level. It is mainly localized to the pigment epithelium, but also to some few neurons of varying types in the inner retina. Cystatin C is similarly expressed in normal mouse and human retinas. CONCLUSIONS. Cystatin C was identified and the localization described in the retinas of rat, mouse, and human using several techniques. Cystatin C is known to efficiently inactivate certain cysteine proteases. One of them, cathepsin S, is present in the retinal pigment epithelium and affects the proteolytic processing by cathepsin D of diurnally shed photoreceptor outer segments. Hypothetically, it appears possible that retinal cystatin C, given its localization to the pigment epithelium and its ability to inhibit cathepsin S, could be involved in the regulation of photoreceptor degradation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy