SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abreu P.) ;mspu:(conferencepaper)"

Sökning: WFRF:(Abreu P.) > Konferensbidrag

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marconi, A., et al. (författare)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
2.
  • Marconi, Alessandro, et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : Phase A study and path to construction
  • 2020
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy VIII. - : SPIE - International Society for Optical Engineering. - 9781510636828 - 9781510636811
  • Konferensbidrag (refereegranskat)abstract
    • HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
  •  
3.
  • Marconi, A., et al. (författare)
  • EELT-HIRES the high-resolution spectrograph for the E-ELT
  • 2016
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of E-ELT instruments will include an optical infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
  •  
4.
  • Cirasuolo, M., et al. (författare)
  • MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147, s. 91470-91470
  • Konferensbidrag (refereegranskat)abstract
    • MOONS (the Multi-Object Optical and Near-infrared Spectrograph) has been selected by ESO as a third-generation instrument for the Very Large Telescope (VLT). The light grasp of the large collecting area offered by the VLT (8.2m diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8 -1.8 mu m) of MOONS will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of Galactic, extragalactic and cosmological studies, and it will provide crucial follow-up for major facilities such as Gaia, VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very first galaxies and reionization of the Universe at redshifts of z > 8-9, just a few million years after the Big Bang. From five years of observations MOONS will provide high-quality spectra for > 3M stars in our Galaxy and the Local Group, and for 1-2M galaxies at z > 1 (for an SDSS-like survey), promising to revolutionize our understanding of the Universe. The baseline design consists of similar to 1000 fibres, deployable over a field-of-view of similar to 500 arcmin(2), the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8 -1.8 mu m with two spectral resolving powers: in the medium-resolution mode (R similar to 4,000-6,000) the entire wavelength range is observed simultaneously, while the high-resolution mode will cover three selected sub-regions simultaneously: one region with R similar to 8,000 near the Ca II triplet to measure stellar radial velocities, and two regions at R similar to 20,000 (one in each of the J- and H-bands), for precision measurements of chemical abundances.
  •  
5.
  • Di Marcantonio, P., et al. (författare)
  • ANDES, the high resolution spectrograph for the ELT : project management and system engineering approaches for mastering its preliminary design phase
  • 2022
  • Ingår i: MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY X. - : SPIE - International Society for Optical Engineering. - 9781510653566 - 9781510653559
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • At the end of 2021, the ESO council approved the start of the construction phase for a High Resolution Spectrograph for the ELT, formerly known as ELT-HIRES, renamed recently as ANDES (ArmazoNes high Dispersion Echelle Spectrograph). The current initial schedule foresees a 9-years development aimed to bring the instrument on-sky soon after the first-generation ELT instruments. ANDES combines high spectral resolution (up to 100,000), wide spectral range (0.4 mu m to 1.8 mu m with a goal from 0.35 mu m to 2.4 mu m) and extreme stability in wavelength calibration accuracy (better than 0.02 m/s rms over a 10-year period in a selected wavelength range) with massive optical collecting power of the ELT thus enabling to achieve possible breakthrough groundbreaking scientific discoveries. The main science cases cover a possible detection of life signatures in exoplanets, the study of the stability of Nature's physical constants along the universe lifetime and a first direct measurement of the cosmic acceleration. The reference design of this instrument in its extended version (with goals included) foresees 4 spectrographic modules fed by fibers, operating in seeing and diffraction limited (adaptive optics assisted) mode carried out by an international consortium composed by 24 institutes from 13 countries which poses big challenges in several areas. In this paper we will describe the approach we intend to pursue to master management and system engineering aspects of this challenging instrument focused mainly on the preliminary design phase, but looking also ahead towards its final construction.
  •  
6.
  • Choudhari, M., et al. (författare)
  • Assessment of slat noise predictions for 30P30N high- lift configuration from Banc-III workshop
  • 2015
  • Ingår i: 21st AIAA/CEAS Aeroacoustics Conference. - Reston, Virginia : American Institute of Aeronautics and Astronautics Inc, AIAA. - 9781624103674
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a summary of the computational predictions and measurement data contributed to Category 7 of the 3rd AIAA Workshop on Benchmark Problems for Airframe Noise Computations (BANC-III), which was held in Atlanta, GA, on June 14-15, 2014. Category 7 represents the first slat-noise configuration to be investigated under the BANC series of workshops, namely, the 30P30N two-dimensional high-lift model (with a slat contour that was slightly modified to enable unsteady pressure measurements) at an angle of attack that is relevant to approach conditions. Originally developed for a CFD challenge workshop to assess computational fluid dynamics techniques for steady high-lift predictions, the 30P30N configurations has provided a valuable opportunity for the airframe noise community to collectively assess and advance the computational and experimental techniques for slat noise. The contributed solutions are compared with each other as well as with the initial measurements that became available just prior to the BANC-III Workshop. Specific features of a number of computational solutions on the finer grids compare reasonably well with the initial measurements from FSU and JAXA facilities and/or with each other. However, no single solution (or a subset of solutions) could be identified as clearly superior to the remaining solutions. Grid sensitivity studies presented by multiple BANC-III participants demonstrated a relatively consistent trend of reduced surface pressure fluctuations, higher levels of turbulent kinetic energy in the flow, and lower levels of both narrow band peaks and the broadband component of unsteady pressure spectra in the nearfield and farfield. The lessons learned from the BANC-III contributions have been used to identify improvements to the problem statement for future Category-7 investigations.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy