SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agholme Lotta) ;pers:(Zetterberg Henrik 1973)"

Sökning: WFRF:(Agholme Lotta) > Zetterberg Henrik 1973

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agholme, Lotta, et al. (författare)
  • Low-dose γ-secretase inhibition increases secretion of Aβ peptides and intracellular oligomeric Aβ.
  • 2017
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 85, s. 211-219
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibitors have been considered promising drug candidates against Alzheimer's disease (AD) due to their ability to reduce amyloid-β (Aβ) production. However, clinical trials have been halted due to lack of clinical efficacy and/or side effects. Recent in vitro studies suggest that low doses of γ-secretase inhibitors may instead increase Aβ production. Using a stem cell-derived human model of cortical neurons and low doses of the γ-secretase inhibitor DAPT, the effects on a variety of Aβ peptides were studied using mass spectrometry. One major focus was to develop a novel method for specific detection of oligomeric Aβ (oAβ), and this was used to study the effects of low-dose γ-secretase inhibitor treatment on intracellular oAβ accumulation. Low-dose treatment (2 and 20nM) with DAPT increased the secretion of several Aβ peptides, especially Aβx-42. Furthermore, using the novel method for oAβ detection, we found that 2nM DAPT treatment of cortical neurons resulted in increased oAβ accumulation. Thus, low dose-treatment with DAPT causes both increased production of long, aggregation-prone Aβ peptides and accumulation of intracellular Aβ oligomers, both believed to contribute to AD pathology.
  •  
2.
  • Bergström, Petra, et al. (författare)
  • Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) and its cleavage product amyloid beta (A beta) have been thoroughly studied in Alzheimer's disease. However, APP also appears to be important for neuronal development. Differentiation of induced pluripotent stem cells (iPSCs) towards cortical neurons enables in vitro mechanistic studies on human neuronal development. Here, we investigated expression and proteolytic processing of APP during differentiation of human iPSCs towards cortical neurons over a 100-day period. APP expression remained stable during neuronal differentiation, whereas APP processing changed. alpha-Cleaved soluble APP (sAPP alpha) was secreted early during differentiation, from neuronal progenitors, while beta-cleaved soluble APP (sAPP beta) was first secreted after deep-layer neurons had formed. Short A beta peptides, including A beta 1-15/16, peaked during the progenitor stage, while processing shifted towards longer peptides, such as A beta 1-40/42, when post-mitotic neurons appeared. This indicates that APP processing is regulated throughout differentiation of cortical neurons and that amyloidogenic APP processing, as reflected by A beta 1-40/42, is associated with mature neuronal phenotypes.
  •  
3.
  • Bergström, Petra, et al. (författare)
  • Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons
  • 2021
  • Ingår i: Viruses-Basel. - : MDPI AG. - 1999-4915. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.
  •  
4.
  • Bodda, C., et al. (författare)
  • HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection
  • 2020
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 217:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpes simplex virus (HSV) is the main cause of viral encephalitis in the Western world, and the type I interferon (IFN) system is important for antiviral control in the brain. Here, we have compared Ifnb induction in mixed murine brain cell cultures by a panel of HSV1 mutants, each devoid of one mechanism to counteract the IFN-stimulating cGAS-STING pathway. We found that a mutant lacking the deubiquitinase (DUB) activity of the VP1-2 protein induced particularly strong expression of Ifnb and IFN-stimulated genes. HSV1 ΔDUB also induced elevated IFN expression in murine and human microglia and exhibited reduced viral replication in the brain. This was associated with increased ubiquitination of STING and elevated phosphorylation of STING, TBK1, and IRF3. VP1-2 associated directly with STING, leading to its deubiquitination. Recruitment of VP1-2 to STING was dependent on K150 of STING, which was ubiquitinated by TRIM32. Thus, the DUB activity of HSV1 VP1-2 is a major viral immune-evasion mechanism in the brain. © 2020 Bodda et al.
  •  
5.
  • Cicognola, Claudia, et al. (författare)
  • Tauopathy-Associated Tau Fragment Ending at Amino Acid 224 Is Generated by Calpain-2 Cleavage.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1143-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau aggregation in neurons and glial cells characterizes tauopathies as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Tau proteolysis has been proposed as a trigger for tau aggregation and tau fragments have been observed in brain and cerebrospinal fluid (CSF). Our group identified a major tau cleavage at amino acid (aa) 224 in CSF; N-terminal tau fragments ending at aa 224 (N-224) were significantly increased in AD and lacked correlation to total tau (t-tau) and phosphorylated tau (p-tau) in PSP and CBD.Previous studies have shown cleavage from calpain proteases at sites adjacent to aa 224. Our aim was to investigate if calpain-1 or -2 could be responsible for cleavage at aa 224.Proteolytic activity of calpain-1, calpain-2, and brain protein extract was assessed on a custom tau peptide (aa 220-228), engineered with fluorescence resonance energy transfer (FRET) technology. Findings were confirmed with in-gel trypsination and mass spectrometry (MS) analysis of brain-derived bands with proteolytic activity on the FRET substrate. Finally, knock-down of the calpain-2 catalytic subunit gene (CAPN2) was performed in a neuroblastoma cell line (SH-SY5Y).Calpain-2 and brain protein extract, but not calpain-1, showed proteolytic activity on the FRET substrate. MS analysis of active gel bands revealed presence of calpain-2 subunits, but not calpain-1. Calpain-2 depletion and chemical inhibition suppressed proteolysis of the FRET substrate. CAPN2 knock-down caused a 76.4% reduction of N-224 tau in the cell-conditioned media.Further investigation of the calpain-2 pathway in the pathogenesis of tauopathies is encouraged.
  •  
6.
  • Nazir, Faisal Hayat, et al. (författare)
  • Expression and secretion of synaptic proteins during stem cell differentiation to cortical neurons.
  • 2018
  • Ingår i: Neurochemistry international. - : Elsevier BV. - 1872-9754 .- 0197-0186. ; 121, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation. Protein levels were measured in cells, modeling fetal cortical development and in cell-conditioned media which was used as a model of cerebrospinal fluid (CSF), respectively. Human iPSC-derived cortical neurons were maintained over a period of at least 150 days, which encompasses the different stages of neuronal development. The differentiation was divided into the following stages: hiPSC, neuro-progenitors, immature and mature cortical neurons. We show that NRGN was first expressed and secreted by neuro-progenitors while the maximum was reached in mature cortical neurons. GAP-43 was expressed and secreted first by neuro-progenitors and its expression increased markedly in immature cortical neurons. SYT-1 was expressed and secreted already by hiPSC but its expression and secretion peaked in mature neurons. SNAP-25 was first detected in neuro-progenitors and the expression and secretion increased gradually during neuronal stages reaching a maximum in mature neurons. The sensitive analytical techniques used to monitor the secretion of these synaptic proteins during cortical development make these data unique, since the secretion of these synaptic proteins has not been investigated before in such experimental models. The secretory profile of synaptic proteins, together with low release of intracellular content, implies that mature neurons actively secrete these synaptic proteins that previously have been associated with neurodegenerative disorders, including Alzheimer's disease. These data support further studies of human neuronal and synaptic development in vitro, and would potentially shed light on the mechanisms underlying altered concentrations of the proteins in bio-fluids in neurodegenerative diseases.
  •  
7.
  • Reinert, Line S, et al. (författare)
  • Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection.
  • 2020
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 131:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Protection of the brain from viral infections involves the type I interferon (IFN-I) system, defects in which renders humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels leads to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we here show that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, while lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices, or mice treated with caspase inhibitor, exhibited lower viral load and improved outcome of infection. Collectively, we identify an activation-induced apoptosis program in brain immune cells which down-modulates local immune responses.
  •  
8.
  • Roselli, Sandra, et al. (författare)
  • APP-BACE1 Interaction and Intracellular Localization Regulate A beta Production in iPSC-Derived Cortical Neurons
  • 2023
  • Ingår i: Cellular and Molecular Neurobiology. - 0272-4340. ; 43
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is characterized pathologically by amyloid beta (A beta)-containing plaques. Generation of A beta from amyloid precursor protein (APP) by two enzymes, beta- and gamma-secretase, has therefore been in the AD research spotlight for decades. Despite this, how the physical interaction of APP with the secretases influences APP processing is not fully understood. Herein, we compared two genetically identical human iPSC-derived neuronal cell types: low A beta-secreting neuroprogenitor cells (NPCs) and high A beta-secreting mature neurons, as models of low versus high A beta production. We investigated levels of substrate, enzymes and products of APP amyloidogenic processing and correlated them with the proximity of APP to beta- and gamma-secretase in endo-lysosomal organelles. In mature neurons, increased colocalization of full-length APP with the beta-secretase BACE1 correlated with increased beta-cleavage product sAPP beta. Increased flAPP/BACE1 colocalization was mainly found in early endosomes. In the same way, increased colocalization of APP-derived C-terminal fragment (CTF) with presenilin-1 (PSEN1), the catalytic subunit of gamma-secretase, was seen in neurons as compared to NPCs. Furthermore, most of the interaction of APP with BACE1 in low A beta-secreting NPCs seemed to derive from CTF, the remaining APP part after BACE1 cleavage, indicating a possible novel product-enzyme inhibition. In conclusion, our results suggest that interaction of APP and APP cleavage products with their secretases can regulate A beta production both positively and negatively. beta- and gamma-Secretases are difficult targets for AD treatment due to their ubiquitous nature and wide range of substrates. Therefore, targeting APP-secretase interactions could be a novel treatment strategy for AD.
  •  
9.
  • Satir, Tugce Munise, et al. (författare)
  • Accelerated neuronal and synaptic maturation by BrainPhys medium increases Aβ secretion and alters Aβ peptide ratios from iPSC-derived cortical neurons.
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the neuropathological hallmarks of Alzheimer's disease (AD) is cerebral deposition of amyloid plaques composed of amyloid β (Aβ) peptides and the cerebrospinal fluid concentrations of those peptides are used as a biomarker for AD. Mature induced pluripotent stem cell (iPSC)-derived cortical neurons secrete Aβ peptides in ratios comparable to those secreted to cerebrospinal fluid in human, however the protocol to achieve mature neurons is time consuming. In this study, we investigated if differentiation of neuroprogenitor cells (NPCs) in BrainPhys medium, previously reported to enhance synaptic function of neurons in culture, would accelerate neuronal maturation and, thus increase Aβ secretion as compared to the conventional neural maintenance medium. We found that NPCs cultured in BrainPhys displayed increased expression of markers for cortical deep-layer neurons, increased synaptic maturation and number of astroglial cells. This accelerated neuronal maturation was accompanied by increased APP processing, resulting in increased secretion of Aβ peptides and an increased Aβ38 to Aβ40 and Aβ42 ratio. However, during long-term culturing in BrainPhys, non-neuronal cells appeared and eventually took over the cultures. Taken together, BrainPhys culturing accelerated neuronal maturation and increased Aβ secretion from iPSC-derived cortical neurons, but changed the cellular composition of the cultures.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy