SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agostini Marco 1987) ;pers:(Heo J. W.)"

Sökning: WFRF:(Agostini Marco 1987) > Heo J. W.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agostini, Marco, 1987, et al. (författare)
  • Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorine-free Electrolyte and Nanostructured S/C Composite
  • 2018
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 11:17, s. 2981-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new Li–S cell concept based on an optimized F-free catholyte solution and a high loading nanostructured C/S composite cathode. The Li2S8present in the electrolyte ensures both buffering against active material dissolution and Li+conduction. The high S loading is obtained by confining elemental S (≈80 %) in the pores of a highly ordered mesopores carbon (CMK3). With this concept we demonstrate stabilization of a high energy density and excellent cycling performance over 500 cycles. This Li–S cell has a specific capacity that reaches over 1000 mA h g−1, with an overall S loading of 3.6 mg cm−2and low electrolyte volume (i.e., 10 μL cm−2), resulting in a practical energy density of 365 Wh kg−1. The Li–S system proposed thus meets the requirements for large scale energy storage systems and is expected to be environmentally friendly and have lower cost compared with the commercial Li-ion battery thanks to the removal of both Co and F from the overall formulation.
  •  
2.
  • Haridas, Anupriya K., et al. (författare)
  • A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage
  • 2020
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 385:1 April
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium-ion based energy storage systems have attracted extensive attention due to the similarities in the mechanism of operation with lithium-ion batteries along with the additional benefit of low cost and high abundance of sodium resources. Iron sulfide-based electrodes that operate via conversion mechanism have shown ample potential for high energy sodium-ion storage. However, the problems related with tremendous volume changes and the dissolution of sodium polysulfides in the electrolyte deteriorate the cycle life and limit their application in sodium-ion batteries (SIBs). Herein, a hybrid anode material, FeS/SPAN-HNF, with iron sulfide (FeS) nanoparticles decorated in a sulfurized polyacrylonitrile (SPAN) fiber matrix is demonstrated as flexible and free-standing anode material for high-rate SIBs. Unlike previous strategies in which FeS is encapsulated in an electrochemically inactive carbon matrix, this study utilizes SPAN, an electrochemically active material, as a dual functional matrix that can efficiently buffer volume expansion and sulfur dissolution of FeS nanoparticles as well as provide significant capacity improvement. The as-designed electrode is self-standing and flexible, without current collectors, binders or additional conductive agents, thus rendering enhanced practical capacity and energy density. This electrode showed a high reversible capacity of 782.8 mAh g−1 at 200 mA g−1 with excellent high rate capability, maintaining 327.5 mAh g−1 after 500 cycles at 5 A g−1, emphasizing promising prospects for the development of flexible and high energy density SIBs.
  •  
3.
  • Haridas, Anupriya K., et al. (författare)
  • Boosting High Energy Density Lithium-Ion Storage via the Rational Design of an FeS-Incorporated Sulfurized Polyacrylonitrile Fiber Hybrid Cathode
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:33, s. 29924-29933
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to satisfy the escalating energy demands, it is inevitable to improve the energy density of current Li-ion batteries. As the development of high-capacity cathode materials is of paramount significance compared to anode materials, here we have designed for the first time a unique synergistic hybrid cathode material with enhanced specific capacity, incorporating cost-effective iron sulfide (FeS) nanoparticles in a sulfurized polyacrylonitrile (SPAN) nanofiber matrix through a rational in situ synthesis strategy. Previous reports on FeS cathodes are scarce and consist of an amorphous carbon matrix to accommodate the volume changes encountered during the cycling process. However, this inactive buffering matrix eventually increases the weight of the cell, reducing the overall energy density. By the rational design of this hybrid composite cathode, we ensure that the presence of covalently bonded sulfur in SPAN guarantees high sulfur utilization, while effectively buffering the volume changes in FeS. Meanwhile, FeS can compensate for the conductivity issues in the SPAN, thereby realizing a synergistically driven dual-active cathode material improving the overall energy density of the composite. Simultaneous in situ generation of FeS nanoparticles within the SPAN fiber matrix was carried out via electrospinning followed by a one-step heating procedure. The developed hybrid cathode material displays enhanced lithium-ion storage, retaining 688.6 mA h g(FeS@SPAN composite)-1 at the end of 500 cycles at 1 A g-1 even within a narrow voltage range of 1-3.0 V. A high discharge energy density > 900 W h kg(FeS@SPAN composite)-1, much higher than the theoretical energy density of the commercial LiCoO2 cathode, was also achieved, revealing the promising prospects of this hybrid cathode material for high energy density applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy