SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlgren Christina) srt2:(2010-2014);lar1:(lu)"

Sökning: WFRF:(Ahlgren Christina) > (2010-2014) > Lunds universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Söderberg, Christopher, et al. (författare)
  • The molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization.
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 288:12, s. 8156-8167
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle X-ray scattering (SAXS) and X-ray crystallography, we describe the solution structure of the oligomers formed during the iron-dependent assembly of yeast (Yfh1) and E. coli (CyaY) frataxin. At an iron-to-protein ratio of 2, the initially monomeric Yfh1 is converted to a trimeric form in solution. The trimer in turn serves as the assembly unit for higher-order oligomers induced at higher iron-to-protein ratios. The X-ray crystallographic structure obtained from iron-soaked crystals demonstrates that iron binds at the trimer-trimer interaction sites, presumably contributing to oligomer stabilization. For the ferroxidation-deficient D79A;D82A variant of Yfh1, iron-dependent oligomerization may still take place, although more than 50% of the protein is found in the monomeric state at the highest iron-to-protein ratio used. This demonstrates that the ferroxidation reaction controls frataxin assembly and presumably the iron chaperone function of frataxin and its interactions with target proteins. For E. coli CyaY, the assembly unit of higher order oligomers is a tetramer, which could be an effect of the much shorter N-terminal region of this protein. The results show that understanding of the mechanistic features of frataxin function requires detailed knowledge of the interplay between the ferroxidation reaction, iron-induced oligomerization and the structure of oligomers formed during assembly.
  •  
3.
  • Wolfhagen Sand, Fredrik, et al. (författare)
  • Growth-limiting role of endothelial cells in endoderm development
  • 2011
  • Ingår i: Developmental Biology. - : Academic Press. - 0012-1606 .- 1095-564X. ; 352:2, s. 267-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy