SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlgren Kajsa) ;conttype:(scientificother)"

Sökning: WFRF:(Ahlgren Kajsa) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Johan, et al. (författare)
  • Klimatrelaterade förändringar i sjöar och vattendrag : En jämförelse mellan två perioder (1995-2000 och 2009-2014)
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Miljöövervakningsprogrammen ger oss möjligheten att övervaka hur storskaliga förändringar,såsom klimatet och försurningen, påverkar våra sjöar och vattendrag. Det nationellasötvattensprogrammets delprogram "Trendstationer sjöar" och "Trendstationer vattendrag"kan tillsammans med regionala övervakningsprogram ge en övergripande bild av dennuvarande statusen samt fungera som ett verktyg för övervakning av potentiella förändringari våra sötvattenssystem.En faktor som kan framkalla stora förändringar är den pågående klimatförändringen, vilkenbland annat innebär en högre medeltemperatur och förändrade vädersystem. Till exempelleder dessa förändringar till en förlängd växtsäsong och en snabbare nedbrytning av organisktmaterial i marken. Samtidigt kommer de kraftigare regnen att öka på vissa platser, vilketleder till att mer organiskt material sköljs ut i våra sjöar och vattendrag. Den ökade temperaturenförändrar också spelreglerna för de organismer som är anpassade för kallt vattenoch det möjliggör att nya områden kan koloniseras av arter som är anpassade för varmareklimat.Det finns även andra antroprogena störningar som påverkar våra sjöar och vattendrag, tillexempel utsläppen av svaveldioxid som låg bakom den kraftiga försurning av mark och vattensom man än idag ser konsekvenserna av. Utsläppen av svaveldioxid har sedan 80-taletminskat kraftigt och nu börjar man se en långsam återhämtning i vissa sjöar och vattendrag. För att förstå mer om hur dessa direkta och indirekta effekter av klimatförändringarna ochförsurningen påverkar våra svenska vatten har denna studie utvärderat tidsseriedata för perioderna1995-2000 och 2009-2014 från svenska sjöar och vattendrag. Samtliga sjöar och vattendrag i denna studie ingår i den nationella eller regionala miljöövervakningenoch totalt har 177 sjöar och 121 vattendragslokaler inkluderats i analyserna. Generellaförändringar mellan perioderna i vattenkemi och biologiska parametrar har studerats. Likaså om dessa förändringar skiljer sig åt beroende på sjöarnas och vattendragensstorlek, vattenfärg och alkalinitet. Slutligen har även sjöarnas och vattendragens geografiskaplacering baserat på de så kallade ekoregionerna inkluderats i utvärderingen.De kemisk-fysikaliska parametrar från sjöarna och vattendragen som har undersökts är lufttemperatur,absorbans, TOC (totalt organiskt kol), järn, sulfat, totalkväve, totalfosfor samtpH och alkalinitet. Förändringar avseende växtplankton har studerats med hjälp av parametrarnatotal biovolym (mm3/l), trofiskt planktonindex (TPI), antalet växtplanktonarteroch andelen cyanobakterier. För bottenfauna har förändringar av kvotenOligochaeta/Chironomidae analyserats.Resultaten visar att siktdjupet i de undersökta sjöarna minskar mellan perioderna. Dennaminskning i siktdjup kan kopplas till den ökning av TOC, absorbans och järn som sker parallellt.För vattendragen sker en liknande utveckling med en generell ökning i absorbans,TOC och järn. Dessa förändringar har dels en direkt koppling till klimatförändringarna genomen förlängd växtsäsong och dels en koppling till ökad nedbrytning vilket leder till mertillgängligt organiskt material. Vidare så kan förändringar i nederbörden påverka hur mycket av detta organiska material som spolas ut i vattensystemen. Dessutom så spelar denminskade sulfatdepositionen en stor roll i den ökande vattenfärgen och i förlängningensiktdjupet genom kemiska förändringar i jordlagren som leder till att mer material blir tillgängligtoch kan sköljas ut i vattnet. Den minskade mängden sulfat i sjöarna och vattendragenär den tydligaste förändringen i datamaterialet och kan direkt kopplas till en minskadsulfatdeposition, men inte till klimatförändringarna. Denna minskning syns även i pH ochalkaliniteten som båda generellt ökar mellan perioderna. Förändringen för pH och alkalinitetär dock inte lika tydlig som för sulfat. Även om trenderna är desamma i vattendragensom för sjöarna är förändringen dock inte lika tydlig i vattendragen. Orsaken är de fysiskaskillnaderna mellan vattendrag och sjöar, där vattendragen ser mycket kraftigare variationeri flöde inom och mellan år och därmed också i de undersökta variablerna.För sjöarnas närsalter sker också signifikanta förändringar mellan perioderna, kväve minskargenerellt, medan fosfor minskar eller ökar beroende på vilken sjötyp man tittar på. Förvattendragen sker inte några generella förändringar i fosfor mellan de undersökta perioderna,däremot så minskar kväve generellt även i vattendragen. Kväveminskningen kandelvis härledas direkt till den minskning i atmosfärisk deposition som skett under perioden,men åtgärder inom skogs- och jordbruket för att minska kväve- och fosforläckaget påverkarantagligen också förändringen av närsaltskoncentrationerna. Här kan en mer lokal utvärderingdär man även inkluderar olika kväveminskande åtgärder samt markanvändning ianalyserna, ge en bättre förståelse för vad som drivit förändringen i näringssalter.Bland de biologiska variabler som har kunnat undersökas så ökar antalet växtplanktonartergenerellt i sjöarna mellan perioderna, vilket kan vara en respons på den minskade försurningen.Vidare så ökar det trofiska planktonindexet mellan perioderna, vilket indikerar attsjöarna blivit näringsrikare. En möjlig förklaring kan också vara den ökade mängden TOCoch därmed en tillförsel av mer organiskt bundna närsalter. Det är dock så att även om detsker en ökning i trofiska planktonindex så visar det fortfarande inte på att det finns någrakraftiga övergödningsproblem i de undersökta sjöarna. Vidare har andelen cyanobakterieroch den totala biovolymen växtplankton inte förändrats generellt under perioden. För bottenfaunanundersöktes Oligochaeta/Chironomidae-kvoten, som ökar generellt vid övergödningför att syrgashalten blir låg och/eller den organiska belastningen hög på sjöbotten.För kvoten sker inga generella förändringar, dock sker det förändringar när sjöarna delasupp i sjötyp. Det är svårt att hitta någon generell förklaring till dessa förändringar, men lokalaoch mer ingående analyser kan möjligen hitta förklaringar till dessa förändringar i O/Ckvoten. Det saknas mycket biologiska provtagningar i det datamaterial som låg till grundför denna studie, för vattenkemin finns det till exempel ca 170 sjöar, men för biologin endastca 50 sjöar som kan inkluderas i utvärderingen. Med tanke på de stora förändringar somsker i vattenfärg och sulfatkoncentrationer så skulle övergripande analyser av både bottenfaunaoch växtplankton vara av stor betydelse för miljöövervakningen av våra sjöar ochvattendrag. Sammanfattningsvis har klimatförändringarna i form av temperaturökningar och förändradenederbördsmönster påverkat våra sjöar och vattendrag under perioden 1995-2014.Men även andra faktorer, såsom den minskande sulfatdepositionen, påverkar våra sjöar ochvattendrag. Dels direkt genom högre pH och alkalinitet, men framför allt indirekt genomförändringar i exporten av TOC och järn. I förlängningen ökar denna export brunifieringenoch tillgången på kol och närsalter för djur och växter.
  •  
2.
  • Ahlgren, Kajsa, 1996 (författare)
  • Sweet stability
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The disaccharide trehalose is known for its ability to stabilise proteins by preventing aggregation and elevating their denaturation temperature, consequently avoiding unfolding. The folding and function of proteins are vital for many biological processes. However, the underlying mechanisms of the stabilising effect of trehalose are not yet fully elucidated. A group of diseases known as amyloidosis is associated with the formation of amyloid fibrils, highly structured protein aggregates that can form in various tissues in the body. Enhancing our understanding of protein misfolding and the role of sugars in preventing amyloid fibril formation is therefore of great importance. In this thesis, the stabilising effect of trehalose is compared with that of sucrose, a structurally similar disaccharide. This comparison aims to solve unanswered questions regarding their interactions with proteins and surrounding water molecules. X-ray and neutron scattering confirmed that myoglobin is preferentially hydrated by water and revealed that trehalose slows down the dynamics of the protein to a greater extent than sucrose, with minimal direct interaction. Differential scanning calorimetry showed that both disaccharides increase the denaturation temperature of the protein lysozyme, sucrose slightly more than trehalose. Additionally, the glass transition temperature of trehalose is marginally higher. Small and wide-angle x-ray scattering demonstrated that both sugars inhibit amyloid fibril formation. The findings suggest that the effectiveness of both disaccharides in stabilising proteins varies with temperature; trehalose is more effective at lower temperatures around the glass transition, whereas sucrose may be slightly more efficient at higher temperatures around protein denaturation.
  •  
3.
  •  
4.
  • Ahlgren Ode, Kajsa (författare)
  • Travelling Business Models : On adapting business models to new contexts
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • How business models are configured can provide one solution to bringing forward sustainable innovations and transforming businesses and industries so that they become more sustainable. Creating a shift in the energy sector’s use of renewable sources is of particular importance since the energy sector is the source of one-fourth of all global greenhouse gas emissions. In California, the dominant business model for solar energy is the so-called third-party-ownership business model (TPO). It can be described as a “Cleantech-as-a-service business model” based on product usage rather than the traditional direct ownership model. The research in this thesis started with the observation that actors in European markets were adopting the TPO business model. However, despite being portrayed in various media and reports as a successful archetype to copy, the TPO was in fact adapted to fit its new market contexts. The research in this thesis focuses on the phenomenon of the “travelling TPO” to empirically explore how a BM “circulating out there” as a model to follow is brought into a new context and adapted to fit it. The findings show that business models are highly context dependent and that both external market conditions and internal organizational factors influence business models that are brought into new contexts. The thesis presents business model translation as an emergent and actor-oriented view on how organizations recognize, adopt and adapt business models as models to follow. In line with a translation perspective, the research reveals that the tacit and ambiguous nature of business models allow actors involved in bringing and adapting business models into new settings to shape them according to their experiences and interests. Through interpretations and adaptations, actors continuously create preliminary translations of a business model that iteratively resonate with the new context. This eventually allows the business model to be contextualized in its new setting.
  •  
5.
  • Ahlgren, Serina, et al. (författare)
  • Description of the Agrosfär model – a tool for the climate impact assessment of farms, crop and animal production systems in Sweden
  • 2024
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The agricultural sector in Sweden needs to cut GHG emissions and contribute to the climate goal of net-zero emissions by 2045. The GHG reduction goal for agricultural emissions is not quantified, but the Swedish climate policy framework states that ‘Swedish food production shall increase as much as possible with as little climate impact as possible’. Multiple key actors within the sector of food and agriculture have developed roadmaps or industry specific goals for reducing GHG emissions from the sector. Consequently, requirements for transparent GHG accounting and reporting are increasing within the agricultural sector, both on a national and international level. The purpose of the Agrosfär tool is to establish an automatic data driven climate calculator used to calculate GHG emissions from agricultural products and on a farm enterprise level. Automation and automatic data collection will save time, increase the accuracy of the calculations, and simplify updates of the tool to keep it aligned with the most recent climate data and climate reporting methodology. It will make it possible to continuously carry out follow-ups on climate performance indicators and measure improvements from climate measures taken. A working group consisting of agricultural life cycle assessment experts has developed the framework of the tool (e.g., setting system boundaries, selecting methodologies and input data). A technical team has developed algorithms, a digital interface and coupled the tool to other existing agricultural databases, providing farm specific information on crop and animal production data, soil characteristics, carbon footprints and amounts of purchased inputs etc. The tool and user interface have been developed based on input from farmers through prototyping and in-depth interviews. The priority guidelines on which the calculation model is based are the Product Environmental Footprint Category Rules (PEFCR), the International Dairy Federation (IDF)’s approach for carbon footprint for the dairy sector, and FAO Livestock Environmental Assessment and Performance guidelines (FAO LEAP). From the farm perspective, the Greenhouse Gas Protocol (GHG Protocol) Corporate Standard, GHG Protocol Agricultural Guidance (Scope 1 & 2) and GHG Protocol Corporate value chain (Scope 3) Accounting and Reporting Standard are guiding standards. Where standards have diverged or where assumptions have been required, the working group has made expert judgements on which method/guideline to follow or what assumptions to make. A first version of the tool, first described in report version 1, was developed as the basis for further development. The first version contains an animal and a crop module, and can calculate the carbon footprint of crops, milk and beef. This report (version 1.1) has been updated to include the most recent developments of the tool. The main change is that the tool can now also be used to calculate farm climate impact on a yearly basis. Future possibilities to develop the tool and calculation model are described in chapter 7, including suggestions for developing modules for more animal production types, deepening the integration between the crop and animal modules, expanding sources for automatic data collection, developing a carbon sequestration module, and other technical and methodological improvements to ensure alignment with important climate reporting standards. The report will be repeatedly updated as the tool develops, and new versions of the tool are released.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy