SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlström Håkan) ;pers:(Bergsten Peter)"

Sökning: WFRF:(Ahlström Håkan) > Bergsten Peter

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Furthner, Dieter, et al. (författare)
  • Single Point Insulin Sensitivity Estimator in Pediatric Non-Alcoholic Fatty Liver Disease
  • 2022
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S.A.. - 1664-2392. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAttenuated insulin-sensitivity (IS) is a central feature of pediatric non-alcoholic fatty liver disease (NAFLD). We recently developed a new index, single point insulin sensitivity estimator (SPISE), based on triglycerides, high-density-lipoprotein and body-mass-index (BMI), and validated by euglycemic-hyperinsulinemic clamp-test (EHCT) in adolescents. This study aims to assess the performance of SPISE as an estimation of hepatic insulin (in-)sensitivity. Our results introduce SPISE as a novel and inexpensive index of hepatic insulin resistance, superior to established indices in children and adolescents with obesity. Materials and MethodsNinety-nine pubertal subjects with obesity (13.5 +/- 2.0 years, 59.6% males, overall mean BMI-SDS + 2.8 +/- 0.6) were stratified by MRI (magnetic resonance imaging) into a NAFLD (>5% liver-fat-content; male n=41, female n=16) and non-NAFLD (<= 5%; male n=18, female n=24) group. Obesity was defined according to WHO criteria (> 2 BMI-SDS). EHCT were used to determine IS in a subgroup (n=17). Receiver-operating-characteristic (ROC)-curve was performed for diagnostic ability of SPISE, HOMA-IR (homeostatic model assessment for insulin resistance), and HIRI (hepatic insulin resistance index), assuming null hypothesis of no difference in area-under-the-curve (AUC) at 0.5. ResultsSPISE was lower in NAFLD (male: 4.8 +/- 1.2, female: 4.5 +/- 1.1) than in non-NAFLD group (male 6.0 +/- 1.6, female 5.6 +/- 1.5; P< 0.05 {95% confidence interval [CI]: male NAFLD 4.5, 5.2; male non-NAFLD 5.2, 6.8; female NAFLD 4.0, 5.1, female non-NAFLD 5.0, 6.2}). In males, ROC-AUC was 0.71 for SPISE (P=0.006, 95% CI: 0.54, 0.87), 0.68 for HOMA-IR (P=0.038, 95% CI: 0.48, 0.88), and 0.50 for HIRI (P=0.543, 95% CI: 0.27, 0.74). In females, ROC-AUC was 0.74 for SPISE (P=0.006), 0.59 for HOMA-IR (P=0.214), and 0.68 for HIRI (P=0.072). The optimal cutoff-level for SPISE between NAFLD and non-NAFLD patients was 5.18 overall (Youden-index: 0.35; sensitivity 0.68%, specificity 0.67%). ConclusionSPISE is significantly lower in juvenile patients with obesity-associated NAFLD. Our results suggest that SPISE indicates hepatic IR in pediatric NAFLD patients with sensitivity and specificity superior to established indices of hepatic IR.
  •  
3.
  • Julian, Valerie, et al. (författare)
  • Association between alanine aminotransferase as surrogate of fatty liver disease and physical activity and sedentary time in adolescents with obesity
  • 2022
  • Ingår i: European Journal of Pediatrics. - : Springer. - 0340-6199 .- 1432-1076. ; 181:8, s. 3119-3129
  • Tidskriftsartikel (refereegranskat)abstract
    • To compare patterns of sedentary (SED) time (more sedentary, SED + vs less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA + vs less active, MVPA-), and combinations of behaviors (SED-/MVPA + , SED-/MVPA-, SED + /MVPA + , SED + /MVPA-) regarding nonalcoholic fatty liver diseases (NAFLD) markers. This cross-sectional study included 134 subjects (13.4 +/- 2.2 years, body mass index (BMI) 98.9 +/- 0.7 percentile, 48.5% females) who underwent 24-h/7-day accelerometry, anthropometric, and biochemical markers (alanine aminotransferase (ALT) as first criterion, and aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), AST/ALT ratio as secondary criteria). A subgroup of 39 patients underwent magnetic resonance imaging-liver fat content (MRI-LFC). Hepatic health was better in SED- (lower ALT, GGT, and MRI-LFC (p < 0.05), higher AST/ALT (p < 0.01)) vs SED + and in MVPA + (lower ALT (p < 0.05), higher AST/ALT (p < 0.01)) vs MVPA- groups after adjustment for age, gender, and Tanner stages. SED-/MVPA + group had the best hepatic health. SED-/MVPA- group had lower ALT and GGT and higher AST/ALT (p < 0.05) in comparison with SED + /MVPA + group independently of BMI. SED time was positively associated with biochemical (high ALT, low AST/ALT ratio) and imaging (high MRI-LFC) markers independently of MVPA. MVPA time was associated with biochemical markers (low ALT, high AST/ALT) but these associations were no longer significant after adjustment for SED time. Conclusion: Lower SED time is associated with better hepatic health independently of MVPA. Reducing SED time might be a first step in the management of pediatric obesity NAFLD when increasing MVPA is not possible.
  •  
4.
  • Julian, Valerie, et al. (författare)
  • Sedentary time has a stronger impact on metabolic health than moderate to vigorous physical activity in adolescents with obesity : a cross-sectional analysis of the Beta-JUDO study
  • 2022
  • Ingår i: Pediatric Obesity. - : John Wiley & Sons. - 2047-6302 .- 2047-6310. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Relationships between movement-related behaviours and metabolic health remain underexplored in adolescents with obesity.Objectives To compare profiles of sedentary time (more sedentary, SED+ vs. less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA+ vs. less active, MVPA-) and combinations of behaviours (SED-/MVPA+, SED-/MVPA-, SED+/MVPA+, SED+/MVPA-) in regard to metabolic health.Methods One hundred and thirty-four subjects (mean age 13.4 +/- 2.2 yrs, mean body mass index [BMI] 98.9 +/- 0.7 percentile, 48.5% females) underwent 24 h/7 day accelerometry, anthropometric, body composition, blood pressure (BP), lipid profile and insulin resistance (IR) assessments.Results Metabolic health was better in SED- [lower fat mass (FM) percentage (p < 0.05), blood pressure (BP) (p < 0.05), homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.001) and metabolic syndrome risk score (MetScore) (p < 0.001), higher high-density lipoprotein-cholesterol (HDL-c) (p = 0.001)] vs. SED+ group and in MVPA+ [lower triglyceridemia (TG), (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.001), higher HDL-c (p < 0.01)] vs. MVPA- group after adjustment with age, gender, maturation and BMI. SED-/MVPA+ group had the best metabolic health. While sedentary (p < 0.001) but also MVPA times (p < 0.001) were lower in SED-/MVPA- vs. SED+/MVPA+, SED-/MVPA- had lower FM percentage (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.05) and higher HDL-c (p < 0.05), independently of BMI. Sedentary time was positively correlated with HOMA-IR and Metscore and negatively correlated with HDL-c after adjustment with MVPA (p < 0.05). MVPA was negatively correlated with HOMA-IR, BP and MetScore and positively correlated with HDL-c after adjustment with sedentary time (p < 0.05).Conclusion Lower sedentary time is associated with a better metabolic health independently of MVPA and might be a first step in the management of pediatric obesity when increasing MVPA is not possible.
  •  
5.
  • Langner, Taro, et al. (författare)
  • Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water–fat MRI
  • 2019
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 81:4, s. 2736-2745
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An approach for the automated segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in multicenter water–fat MRI scans of the abdomen was investigated, using 2 different neural network architectures.Methods: The 2 fully convolutional network architectures U‐Net and V‐Net were trained, evaluated, and compared using the water–fat MRI data. Data of the study Tellus with 90 scans from a single center was used for a 10‐fold cross‐validation in which the most successful configuration for both networks was determined. These configurations were then tested on 20 scans of the multicenter study beta‐cell function in JUvenile Diabetes and Obesity (BetaJudo), which involved a different study population and scanning device.Results: The U‐Net outperformed the used implementation of the V‐Net in both cross‐validation and testing. In cross‐validation, the U‐Net reached average dice scores of 0.988 (VAT) and 0.992 (SAT). The average of the absolute quantification errors amount to 0.67% (VAT) and 0.39% (SAT). On the multicenter test data, the U‐Net performs only slightly worse, with average dice scores of 0.970 (VAT) and 0.987 (SAT) and quantification errors of 2.80% (VAT) and 1.65% (SAT).Conclusion: The segmentations generated by the U‐Net allow for reliable quantification and could therefore be viable for high‐quality automated measurements of VAT and SAT in large‐scale studies with minimal need for human intervention. The high performance on the multicenter test data furthermore shows the robustness of this approach for data of different patient demographics and imaging centers, as long as a consistent imaging protocol is used.
  •  
6.
  • Lundström, Elin, et al. (författare)
  • Automated segmentation of human cervical-supraclavicular adipose tissue in magnetic resonance images
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brown adipose tissue (BAT), with a major site in the cervical-supraclavicular depot, is a promising anti-obesity target. This work presents an automated method for segmenting cervical-supraclavicular adipose tissue for enabling time-efficient and objective measurements in large cohort research studies of BAT. Fat fraction (FF) and R2* maps were reconstructed from water-fat magnetic resonance imaging (MRI) of 25 subjects. A multi-atlas approach, based on atlases from nine subjects, was chosen as automated segmentation strategy. A semi-automated reference method was used to validate the automated method in the remaining subjects. Automated segmentations were obtained from a pipeline of preprocessing, affine registration, elastic registration and postprocessing. The automated method was validated with respect to segmentation overlap (Dice similarity coefficient, Dice) and estimations of FF, R2* and segmented volume. Bias in measurement results was also evaluated. Segmentation overlaps of Dice = 0.93 +/- 0.03 (mean +/- standard deviation) and correlation coefficients of r > 0.99 (P < 0.0001) in FF, R2* and volume estimates, between the methods, were observed. Dice and BMI were positively correlated (r = 0.54, P = 0.03) but no other significant bias was obtained (P >= 0.07). The automated method compared well with the reference method and can therefore be suitable for time-efficient and objective measurements in large cohort research studies of BAT.
  •  
7.
  • Lundström, Elin, et al. (författare)
  • Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents
  • 2019
  • Ingår i: Pediatric Obesity. - : Wiley. - 2047-6302 .- 2047-6310. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDespite therapeutic potential against obesity and diabetes, the associations of brown adipose tissue (BAT) with glucose metabolism in young humans are relatively unexplored.ObjectivesTo investigate possible associations between magnetic resonance imaging (MRI) estimates of BAT and glucose metabolism, whilst considering sex, age, and adiposity, in adolescents with normal and overweight/obese phenotypes.MethodsIn 143 subjects (10‐20 years), MRI estimates of BAT were assessed as cervical‐supraclavicular adipose tissue (sBAT) fat fraction (FF) and T*2 from water‐fat MRI. FF and T*2 of neighbouring subcutaneous adipose tissue (SAT) were also assessed. Adiposity was estimated with a standardized body mass index, the waist‐to‐height ratio, and abdominal visceral and subcutaneous adipose tissue volumes. Glucose metabolism was represented by the 2h plasma glucose concentration, the Matsuda index, the homeostatic model assessment of insulin resistance, and the oral disposition index; obtained from oral glucose tolerance tests.ResultssBAT FF and T*2 correlated positively with adiposity before and after adjustment for sex and age. sBAT FF, but not T*2, correlated with 2h glucose and Matsuda index, also after adjustment for sex, age, and adiposity. The association with 2h glucose persisted after additional adjustment for SAT FF.ConclusionsThe association between sBAT FF and 2h glucose, observed independently of sex, age, adiposity, and SAT FF, indicates a role for BAT in glucose metabolism, which potentially could influence the risk of developing diabetes. The lacking association with sBAT T*2 might be due to FF being a superior biomarker for BAT and/or to methodological limitations in the T*2 quantification.
  •  
8.
  • Lundström, Elin, et al. (författare)
  • Magnetic resonance imaging cooling–reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To evaluate whether a water-fat magnetic resonance imaging (MRI) cooling-reheating protocol could be used to detect changes in lipid content and perfusion in the main human brown adipose tissue (BAT) depot after a three-hour long mild cold exposure.MATERIALS AND METHODS: Nine volunteers were investigated with chemical-shift-encoded water-fat MRI at baseline, after a three-hour long cold exposure and after subsequent short reheating. Changes in fat fraction (FF) and R2*, related to ambient temperature, were quantified within cervical-supraclavicular adipose tissue (considered as suspected BAT, denoted sBAT) after semi-automatic segmentation. In addition, FF and R2* were quantified fully automatically in subcutaneous adipose tissue (not considered as suspected BAT, denoted SAT) for comparison. By assuming different time scales for the regulation of lipid turnover and perfusion in BAT, the changes were determined as resulting from either altered absolute fat content (lipid-related) or altered absolute water content (perfusion-related).RESULTS: sBAT-FF decreased after cold exposure (mean change in percentage points = -1.94 pp, P = 0.021) whereas no change was observed in SAT-FF (mean = 0.23 pp, P = 0.314). sBAT-R2* tended to increase (mean = 0.65 s-1, P = 0.051) and SAT-R2* increased (mean = 0.40 s-1, P = 0.038) after cold exposure. sBAT-FF remained decreased after reheating (mean = -1.92 pp, P = 0.008, compared to baseline) whereas SAT-FF decreased (mean = -0.79 pp, P = 0.008, compared to after cold exposure).CONCLUSIONS: The sustained low sBAT-FF after reheating suggests lipid consumption, rather than altered perfusion, as the main cause to the decreased sBAT-FF. The results obtained demonstrate the use of the cooling-reheating protocol for detecting changes in the cervical-supraclavicular fat depot, being the main human brown adipose tissue depot, in terms of lipid content and perfusion.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy