SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ahmed M) ;lar1:(ri)"

Search: WFRF:(Ahmed M) > RISE

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmed, Saad, et al. (author)
  • The betrayal of constant power × time : Finding the missing joules of transiently-powered computers
  • 2019
  • In: Proceedings of the ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES). - New York, NY, USA : Association for Computing Machinery. - 9781450367240 ; , s. 97-109
  • Conference paper (peer-reviewed)abstract
    • Transiently-powered computers (TPCs) lay the basis for a battery-less Internet of Things, using energy harvesting and small capacitors to power their operation. This power supply is characterized by extreme variations in supply voltage, as capacitors charge when harvesting energy and discharge when computing. We experimentally find that these variations cause marked fluctuations in clock speed and power consumption, which determine energy efficiency. We demonstrate that it is possible to accurately model and concretely capitalize on these fluctuations. We derive an energy model as a function of supply voltage and develop EPIC, a compile-time energy analysis tool. We use EPIC to substitute for the constant power assumption in existing analysis techniques, giving programmers accurate information on worst-case energy consumption of programs. When using EPIC with existing TPC system support, run-time energy efficiency drastically improves, eventually leading up to a 350% speedup in the time to complete a fixed workload. Further, when using EPIC with existing debugging tools, programmers avoid unnecessary program changes that hurt energy efficiency.
  •  
2.
  • Karazisis, Dimitrios, et al. (author)
  • The role of well-defined nanotopography of titanium implants on osseointegration : Cellular and molecular events in vivo
  • 2016
  • In: International Journal of Nanomedicine. - : Dove Medical Press Ltd.. - 1176-9114 .- 1178-2013. ; 11, s. 1367-1382
  • Journal article (peer-reviewed)abstract
    • Purpose: Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods: Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results: Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/μm2). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α, and the osteoclastic marker, CatK, were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion: The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory (TNF-α) and osteoclastic (CatK) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view