SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed S) ;lar1:(mdh)"

Sökning: WFRF:(Ahmed S) > Mälardalens universitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Bestoun S., 1982-, et al. (författare)
  • An evaluation of Monte Carlo-based hyper-heuristic for interaction testing of industrial embedded software applications
  • 2020
  • Ingår i: Soft Computing - A Fusion of Foundations, Methodologies and Applications. - : Springer. - 1432-7643 .- 1433-7479. ; 24:18, s. 13929-13954
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyper-heuristic is a new methodology for the adaptive hybridization of meta-heuristic algorithms to derive a general algorithm for solving optimization problems. This work focuses on the selection type of hyper-heuristic, called the exponential Monte Carlo with counter (EMCQ). Current implementations rely on the memory-less selection that can be counterproductive as the selected search operator may not (historically) be the best performing operator for the current search instance. Addressing this issue, we propose to integrate the memory into EMCQ for combinatorial t-wise test suite generation using reinforcement learning based on the Q-learning mechanism, called Q-EMCQ. The limited application of combinatorial test generation on industrial programs can impact the use of such techniques as Q-EMCQ. Thus, there is a need to evaluate this kind of approach against relevant industrial software, with a purpose to show the degree of interaction required to cover the code as well as finding faults. We applied Q-EMCQ on 37 real-world industrial programs written in Function Block Diagram (FBD) language, which is used for developing a train control management system at Bombardier Transportation Sweden AB. The results show that Q-EMCQ is an efficient technique for test case generation. Addition- ally, unlike the t-wise test suite generation, which deals with the minimization problem, we have also subjected Q-EMCQ to a maximization problem involving the general module clustering to demonstrate the effectiveness of our approach. The results show the Q-EMCQ is also capable of outperforming the original EMCQ as well as several recent meta/hyper-heuristic including modified choice function, Tabu high-level hyper-heuristic, teaching learning-based optimization, sine cosine algorithm, and symbiotic optimization search in clustering quality within comparable execution time.
  •  
2.
  • Ahmed, Bestoun S., 1982-, et al. (författare)
  • Constrained interaction testing : A systematic literature study
  • 2017
  • Ingår i: IEEE Access. - Sweden : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2169-3536. ; 5, s. 25706-25730
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction testing can be used to effectively detect faults that are otherwise difficult to find by other testing techniques. However, in practice, the input configurations of software systems are subjected to constraints, especially in the case of highly configurable systems. Handling constraints effectively and efficiently in combinatorial interaction testing is a challenging problem. Nevertheless, researchers have attacked this challenge through different techniques, and much progress has been achieved in the past decade. Thus, it is useful to reflect on the current achievements and shortcomings and to identify potential areas of improvements. This paper presents the first comprehensive and systematic literature study to structure and categorize the research contributions for constrained interaction testing. Following the guidelines of conducting a literature study, the relevant data are extracted from a set of 103 research papers belonging to constrained interaction testing. The topics addressed in constrained interaction testing research are classified into four categories of constraint test generation, application, generation and application, and model validation studies. The papers within each of these categories are extensively reviewed. Apart from answering several other research questions, this paper also discusses the applications of constrained interaction testing in several domains, such as software product lines, fault detection and characterization, test selection, security, and graphical user interface testing. This paper ends with a discussion of limitations, challenges, and future work in the area.
  •  
3.
  • Ahmed, Bestoun S., 1982-, et al. (författare)
  • Handling constraints in combinatorial interaction testing in the presence of multi objective particle swarm and multithreading
  • 2017
  • Ingår i: Information and Software Technology. - : Elsevier. - 0950-5849 .- 1873-6025. ; 86, s. 20-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Combinatorial testing strategies have lately received a lot of attention as a result of their diverse applications. In its simple form, a combinatorial strategy can reduce several input parameters (configurations) of a system into a small set based on their interaction (or combination). In practice, the input configurations of software systems are subjected to constraints, especially in case of highly configurable systems. To implement this feature within a strategy, many difficulties arise for construction. While there are many combinatorial interaction testing strategies nowadays, few of them support constraints. Objective: This paper presents a new strategy, to construct combinatorial interaction test suites in the presence of constraints. Method: The design and algorithms are provided in detail. To overcome the multi-judgement criteria for an optimal solution, the multi-objective particle swarm optimisation and multithreading are used. The strategy and its associated algorithms are evaluated extensively using different benchmarks and comparisons. Results: Our results are promising as the evaluation results showed the efficiency and performance of each algorithm in the strategy. The benchmarking results also showed that the strategy can generate constrained test suites efficiently as compared to state-of-the-art strategies. Conclusion: The proposed strategy can form a new way for constructing of constrained combinatorial interaction test suites. The strategy can form a new and effective base for future implementations. (C) 2017 Elsevier B.V. All rights reserved.
  •  
4.
  • Ahmed, B. S., et al. (författare)
  • Optimum design of PIλDμ controller for an automatic voltage regulator system using combinatorial test design
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly. © 2016 Ahmed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
5.
  • Degas, A., et al. (författare)
  • A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management : Current Trends and Development with Future Research Trajectory
  • 2022
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 12:3
  • Forskningsöversikt (refereegranskat)abstract
    • Air Traffic Management (ATM) will be more complex in the coming decades due to the growth and increased complexity of aviation and has to be improved in order to maintain aviation safety. It is agreed that without significant improvement in this domain, the safety objectives defined by international organisations cannot be achieved and a risk of more incidents/accidents is envisaged. Nowadays, computer science plays a major role in data management and decisions made in ATM. Nonetheless, despite this, Artificial Intelligence (AI), which is one of the most researched topics in computer science, has not quite reached end users in ATM domain. In this paper, we analyse the state of the art with regards to usefulness of AI within aviation/ATM domain. It includes research work of the last decade of AI in ATM, the extraction of relevant trends and features, and the extraction of representative dimensions. We analysed how the general and ATM eXplainable Artificial Intelligence (XAI) works, analysing where and why XAI is needed, how it is currently provided, and the limitations, then synthesise the findings into a conceptual framework, named the DPP (Descriptive, Predictive, Prescriptive) model, and provide an example of its application in a scenario in 2030. It concludes that AI systems within ATM need further research for their acceptance by end-users. The development of appropriate XAI methods including the validation by appropriate authorities and end-users are key issues that needs to be addressed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
6.
  • Hurter, C., et al. (författare)
  • Usage of more transparent and explainable conflict resolution algorithm : Air traffic controller feedback
  • 2022
  • Ingår i: Transportation Research Procedia. - : Elsevier B.V.. - 2352-1457 .- 2352-1465. ; 66:C, s. 270-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, Artificial intelligence (AI) algorithms have received increasable interest in various application domains including in Air Transportation Management (ATM). Different AI in particular Machine Learning (ML) algorithms are used to provide decision support in autonomous decision-making tasks in the ATM domain e.g., predicting air transportation traffic and optimizing traffic flows. However, most of the time these automated systems are not accepted or trusted by the intended users as the decisions provided by AI are often opaque, non-intuitive and not understandable by human operators. Safety is the major pillar to air traffic management, and no black box process can be inserted in a decision-making process when human life is involved. To address this challenge related to transparency of the automated system in the ATM domain, we investigated AI methods in predicting air transportation traffic conflict and optimizing traffic flows based on the domain of Explainable Artificial Intelligence (XAI). Here, AI models’ explainability in terms of understanding a decision i.e., post hoc interpretability and understanding how the model works i.e., transparency can be provided for air traffic controllers. In this paper, we report our research directions and our findings to support better decision making with AI algorithms with extended transparency.
  •  
7.
  • Khan, A., et al. (författare)
  • Strengthening stability with centralized event-triggered control system with the disturbances and artificial time delay in wireless connected vehicle platooning (CVSs)
  • 2024
  • Ingår i: Systems Science & Control Engineering. - : Taylor and Francis Ltd.. - 2164-2583. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper addresses the difficulties with connected vehicle systems (CVSs), particularly with vehicle platooning, are examined in this paper. For leader and follower-connected vehicles, the control protocol (which includes artificial delays, disturbances and proportional gains) is implemented. With tracking error systems, system dynamics are modelled while taking outside influences into consideration. Using creative thinking, a centralized event-triggered control system is implemented to maximize fleet wide communication updates. System stability is guaranteed by this centralized method in combination with quadratic form Lyapunov stability analysis. The risk of zeno behaviour is reduced by an event-triggered communication condition that is activated when a threshold is exceeded. The effectiveness of the centralized event-triggered system in improving stability and resilience in connected vehicle platooning scenarios is evaluated numerically through simulations.
  •  
8.
  • Masrur Hossain, M., et al. (författare)
  • Analysis and optimization of a modified Kalina cycle system for low-grade heat utilization
  • 2021
  • Ingår i: Energy Conversion and Management. - : Elsevier Ltd. - 2590-1745. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Kalina cycle system (KCS) offers an attractive prospect to produce power by utilizing low-grade heat sources where traditional power cycles cannot be implemented. Intending to explore the potential of exploiting low-grade heat sources for conversion to electrical energy, this study proposes two modified power generation cycles based on KCS-34. A multi-phase expander is positioned between the Kalina separator and the second heat regenerator in the proposed X-modification. In contrast, it is located between the mixer and second regenerator for Y-modification. To explore the potential benefits and limitations of the proposed modifications contrasted with the KCS-34, thermodynamic modeling and optimization have been conducted. The influence of critical decision parameters on overall cycle performance is analyzed. The result elucidates that by implementing an additional multi-phase expander, a significant amount of energy can be extracted from a lean ammonia water loop and X-modification can deliver superior thermodynamic performance compared with the Y-modification and the original KCS-34. With a reduced turbine inlet pressure of 58 bar and an ammonia concentration of 80%, the X-modified cycle's efficiency reaches a peak value of 17% and a net power yield of 1015 kW. An increase of 6.35% can be achieved compared with the conventional KCS-34 operating at the same conditions. Maximum exergy destruction of the working substance was observed in the condenser. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy