SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ajore Ram) "

Search: WFRF:(Ajore Ram)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ajore, Ram, et al. (author)
  • Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations
  • 2017
  • In: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 9:4, s. 498-507
  • Journal article (peer-reviewed)abstract
    • Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53-intact tumors (P ≪ 10−10), and shRNA-mediated knockdown of RPGs activated p53 in TP53-wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53-mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically.
  •  
2.
  • Ajore, Ram, et al. (author)
  • Effect of Humidity on Structural Distortion and Conductance of DNA Nanowire
  • 2013
  • In: Journal of Nanomaterials & Molecular Nanotechnology. - : OMICS Publishing Group. - 2324-8777. ; 2:7
  • Journal article (peer-reviewed)abstract
    • One of the intensively explored domains of the current bionanotechnology is the focus for search of nano-materials intended to develop high throughput electronic devices. Among the questioned physical materials deoxyribonucleic acid (DNA) has given promising background to be explored as potential nanowire material for aspiring nano-devices. The distinguished characteristics of electron hopping between DNA bases intrigues investigators to provide insights of the structrual properties of the DNA under varying relative humidity condition. Present manuscript attempts to provide insights for conductance of double stranded λ-DNA and its short stretch of intrinsic sequences in correspondence to structural distortion as a result of different relative humidity (RH) conditions.
  •  
3.
  • Ajore, Ram, et al. (author)
  • Functional dissection of inherited non-coding variation influencing multiple myeloma risk
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.
  •  
4.
  •  
5.
  • Ajore, Ram, et al. (author)
  • The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells
  • 2010
  • In: BMC Molecular Biology. - : Springer Science and Business Media LLC. - 1471-2199. ; 11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The Eight-Twenty-One (ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function.RESULTS: A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells.CONCLUSIONS: We demonstrate that the GATA-1 transcription factor binds and transactivates the ETO proximal promoter in an erythroid/megakaryocytic-specific manner. Thus, trans-acting factors that are essential in erythroid/megakaryocytic differentiation govern ETO expression.
  •  
6.
  • Ajore, Ram, et al. (author)
  • The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells
  • 2012
  • In: BMC Molecular Biology. - : Springer Science and Business Media LLC. - 1471-2199. ; 13:11
  • Journal article (peer-reviewed)abstract
    • Background: MTG16, MTGR1 and ETO are nuclear transcriptional corepressors of the human ETO protein family. MTG16 is implicated in hematopoietic development and in controlling erythropoiesis/megakaryopoiesis. Furthermore, ETO homologue genes are 3'participants in leukemia fusions generated by chromosomal translocations responsible of hematopoietic dysregulation. We tried to identify structural and functional promoter elements of MTG16 and MTGR1 genes in order to find associations between their regulation and hematopoiesis. Results: 5' deletion examinations and luciferase reporter gene studies indicated that a 492 bp sequence upstream of the transcription start site is essential for transcriptional activity by the MTG16 promoter. The TATA-and CCAAT-less promoter with a GC box close to the start site showed strong reporter activity when examined in erythroid/megakaryocytic cells. Mutation of an evolutionary conserved GATA -301 consensus binding site repressed promoter function. Furthermore, results from in vitro antibody-enhanced electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation indicated binding of GATA-1 to the GATA -301 site. A role of GATA-1 was also supported by transfection of small interfering RNA, which diminished MTG16 expression. Furthermore, expression of the transcription factor HERP2, which represses GATA-1, produced strong inhibition of the MTG16 promoter reporter consistent with a role of GATA-1 in transcriptional activation. The TATA-less and CCAAT-less MTGR1 promoter retained most of the transcriptional activity within a -308 to -207 bp region with a GC-box-rich sequence containing multiple SP1 binding sites reminiscent of a housekeeping gene with constitutive expression. However, mutations of individual SP1 binding sites did not repress promoter function; multiple active SP1 binding sites may be required to safeguard constitutive MTGR1 transcriptional activity. The observed repression of MTG16/MTGR1 promoters by the leukemia associated AML1-ETO fusion gene may have a role in hematopoietic dysfunction of leukemia. Conclusions: An evolutionary conserved GATA binding site is critical in transcriptional regulation of the MTG16 promoter. In contrast, the MTGR1 gene depends on a GC-box-rich sequence for transcriptional regulation and possible ubiquitous expression. Our results demonstrate that the ETO homologue promoters are regulated differently consistent with hematopoietic cell-type-specific expression and function.
  •  
7.
  • Ali, Mina, et al. (author)
  • The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 1649-
  • Journal article (peer-reviewed)abstract
    • Recently, we identified ELL2 as a susceptibility gene for multiple myeloma (MM). To understand its mechanism of action, we performed expression quantitative trait locus analysis in CD138+ plasma cells from 1630 MM patients from four populations. We show that the MM risk allele lowers ELL2 expression in these cells (Pcombined = 2.5 × 10−27; βcombined = −0.24 SD), but not in peripheral blood or other tissues. Consistent with this, several variants representing the MM risk allele map to regulatory genomic regions, and three yield reduced transcriptional activity in plasmocytoma cell lines. One of these (rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further analysis reveals that the MM risk allele associates with upregulation of gene sets related to ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma cell lines support a cause–effect relationship. Our results provide mechanistic insight into MM predisposition.
  •  
8.
  • Christophersen, Mikael K., et al. (author)
  • SMIM1 variants rs1175550 and rs143702418 independently modulate Vel blood group antigen expression
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • The Vel blood group antigen is expressed on the red blood cells of most individuals. Recently, we described that homozygosity for inactivating mutations in SMIM1 defines the rare Vel-negative phenotype. Still, Vel-positive individuals show great variability in Vel antigen expression, creating a risk for Vel blood typing errors and transfusion reactions. We fine-mapped the regulatory region located in SMIM1 intron 2 in Swedish blood donors, and observed a strong correlation between expression and rs1175550 as well as with a previously unreported tri-nucleotide insertion (rs143702418; C > CGCA). While the two variants are tightly linked in Caucasians, we separated their effects in African Americans, and found that rs1175550G and to a lesser extent rs143702418C independently increase SMIM1 and Vel antigen expression. Gel shift and luciferase assays indicate that both variants are transcriptionally active, and we identified binding of the transcription factor TAL1 as a potential mediator of the increased expression associated with rs1175550G. Our results provide insight into the regulatory logic of Vel antigen expression, and extend the set of markers for genetic Vel blood group typing.
  •  
9.
  • Duran-Lozano, Laura, et al. (author)
  • Germline variants at SOHLH2 influence multiple myeloma risk
  • 2021
  • In: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Multiple myeloma (MM) is caused by the uncontrolled, clonal expansion of plasma cells. While there is epidemiological evidence for inherited susceptibility, the molecular basis remains incompletely understood. We report a genome-wide association study totalling 5,320 cases and 422,289 controls from four Nordic populations, and find a novel MM risk variant at SOHLH2 at 13q13.3 (risk allele frequency = 3.5%; odds ratio = 1.38; P = 2.2 × 10-14). This gene encodes a transcription factor involved in gametogenesis that is normally only weakly expressed in plasma cells. The association is represented by 14 variants in linkage disequilibrium. Among these, rs75712673 maps to a genomic region with open chromatin in plasma cells, and upregulates SOHLH2 in this cell type. Moreover, rs75712673 influences transcriptional activity in luciferase assays, and shows a chromatin looping interaction with the SOHLH2 promoter. Our work provides novel insight into MM susceptibility.
  •  
10.
  • Jonsson, Stefan, et al. (author)
  • Identification of sequence variants influencing immunoglobulin levels
  • 2017
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 49:8, s. 1182-1191
  • Journal article (peer-reviewed)abstract
    • Immunoglobulins are the effector molecules of the adaptive humoral immune system. In a genome-wide association study of 19,219 individuals, we found 38 new variants and replicated 5 known variants associating with IgA, IgG or IgM levels or with composite immunoglobulin traits, accounted for by 32 loci. Variants at these loci also affect the risk of autoimmune diseases and blood malignancies and influence blood cell development. Notable associations include a rare variant at RUNX3 decreasing IgA levels by shifting isoform proportions (rs188468174[C>T]: P = 8.3 × 10(-55), β = -0.90 s.d.), a rare in-frame deletion in FCGR2B abolishing IgG binding to the encoded receptor (p.Asn106del: P = 4.2 × 10(-8), β = 1.03 s.d.), four IGH locus variants influencing class switching, and ten new associations with the HLA region. Our results provide new insight into the regulation of humoral immunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view