SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akermark B) ;hsvcat:1"

Sökning: WFRF:(Akermark B) > Naturvetenskap

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Ping, et al. (författare)
  • Photo-induced oxidation of a dinuclear Mn-2(II,II) complex to the Mn-2(III,IV) state by inter- and intramolecular electron transfer to Ru-III tris-bipyridine
  • 2002
  • Ingår i: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 91:1, s. 159-172
  • Tidskriftsartikel (refereegranskat)abstract
    • To model the structural and functional parts of the water oxidizing complex in Photosystem 11, a dimeric manganese(II,11) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru-II(bpy)3) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru-II(bpy), in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru-III(bpy), from the Mn-2(II,II) dimer, which then attained the Mn-2(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn-2(III,IV) state. Our data indicate that oxidation from the Mn-2(II,II) state proceeds stepwise via intermediate formation of Mn-2(II,III) and Mn-2(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn-2(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn-2(III,IV), this suggests that water is essential for the formation of the Mn-2(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem 11, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.
  •  
2.
  • Johansson, A., et al. (författare)
  • Synthesis and photophysics of one mononuclear Mn(III) and one dinuclear Mn(III,III) complex covalently linked to a ruthenium(II) tris(bipyridyl) complex
  • 2003
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 42, s. 7502-7511
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-1).
  •  
3.
  • Abrahamsson, M. L. A., et al. (författare)
  • Ruthenium-manganese complexes for artificial photosynthesis : Factors controlling intramolecular electron transfer and excited-state quenching reactions
  • 2002
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 41:6, s. 1534-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our work toward a system mimicking the electron-transfer steps from manganese to P-680(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 X 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximate to 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium (III) electrontransfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.
  •  
4.
  • Borgström, Magnus, et al. (författare)
  • Light induced manganese oxidation and long-lived charge separation in a Mn-2(II,II)-Ru-II (bpy)(3)-acceptor triad
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 127:49, s. 17504-17515
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoinduced electron-transfer reactions in a Mn-2(II.II)-R-II-NDI triad (1) ([Mn-2(bpmp)(OAc)(2)](+), bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyiphenolate and OAc = acetate, R-II = trisbipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn-2(II.III)) and the reduced naphthalenediimide (NDIcenter dot-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)(3)](2+) intermediate states and the NDIcenter dot- radical in a wide temperature range. The average lifetime of the NDI- radical is ca. 600 mu s at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)(3)](2+) photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximate to 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (-Delta G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.
  •  
5.
  • Pan, Jingxi, et al. (författare)
  • Stepwise charge separation from a ruthenium-tyrosine complex to a nanocrystalline TiO2 film
  • 2004
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 108:34, s. 12904-12910
  • Tidskriftsartikel (refereegranskat)abstract
    • A supramolecular complex composed of Ru(II) tris-bipyridine, tyrosine, and dipicolylamine was synthesized and characterized. This complex was attached to TiO2 nanocrystalline films via ester groups at the Ru(II) chromophore, and photoinduced multistep electron transfer was investigated by laser flash photolysis and electron paramagnetic resonance techniques. Following ultrafast electron injection from the metal-ligand charge transfer excited states of Ru(II) to the conduction band of TiO2, fast intramolecular electron transfer from the tyrosine moiety to the photogenerated Ru(III) was observed, characterized by a rate constant of similar to2 x 10(6) s(-1). By comparison of recovery kinetics at the isosbestic point with that of the reference compound lacking the tyrosine, it was found that the intramolecular electron-transfer efficiency is 90%. A hydrogen-bond-promoted electron-transfer mechanism is proposed.
  •  
6.
  • Wolpher, H., et al. (författare)
  • Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer
  • 2003
  • Ingår i: Inorganic Chemistry Communications. - 1387-7003 .- 1879-0259. ; 6:8, s. 989-991
  • Tidskriftsartikel (refereegranskat)abstract
    • A dinuclear iron complex, related to the active site of Fe hydrogenases, has been covalently linked to a redox active ruthenium tris-bipyridine type photosensitizer. Photophysics and electrochemistry of this system are studied in solution. IR spectra of this complex together with its precursor, the dinuclear iron complex, were also shown.
  •  
7.
  • Berg, K. E., et al. (författare)
  • Covalently linked ruthenium(II)-manganese(II) complexes : Distance dependence of quenching and electron transfer
  • 2001
  • Ingår i: European Journal of Inorganic Chemistry. - 1434-1948 .- 1099-1948. ; 2001:4, s. 1019-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our development of artificial models for photosystem II in green plants, a series of compounds have been prepared in which a RU(bpy)(3)(2+) photosensitizer is covalently Linked to a manganese(II) electron donor. In addition to a trispicolylamine Ligand, two other manganese Ligands, dipicolylamine and aminodiacetic acid, have been introduced in order to study Ligands that are appropriate for the construction of manganese dimers with open coordination sites for the binding of water. Coordination equilibria of the manganese ions were monitored by EPR. The interactions between the ruthenium and manganese moieties were probed by flash photolysis, cyclic voltammetry and steady-state and time-resolved emission measurements. The quenching of the Ru-II excited state by Mn-II was found to be rapid in complexes with short Ru-Mn distances. Nevertheless, each Run species could be photo-oxidized by bimolecular quenching with methylviologen, and the subsequent electron transfer from Mn-II to Ru-III could be monitored.
  •  
8.
  • Ekström, Jesper, et al. (författare)
  • Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model
  • 2006
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; :38, s. 4599-4606
  • Tidskriftsartikel (refereegranskat)abstract
    • The first ruthenium - diiron complex [(mu- pdt) Fe-2(CO)(5){PPh2(C(6)H(4)CCbpy)} Ru(bpy)(2)](2+) 1 (pdt = propyldithiolate, bpy = 2,2'-bipyridine) is described in which the photoactive ruthenium trisbipyridyl unit is linked to a model of the iron hydrogenase active site by a ligand directly attached to one of the iron centers. Electrochemical and photophysical studies show that the light-induced MLCT excited state of the title complex is localized towards the potential diiron acceptor unit. However, the relatively mild potential required for the reduction of the acetylenic bipyridine together with the easily oxidized diiron portion leads to a reductive quenching of the excited state, instead. This process results in a transiently oxidized diiron unit which may explain the surprisingly high light sensitivity of complex 1.
  •  
9.
  • Hammarstrom, L., et al. (författare)
  • A biomimetic approach to artificial photosynthesis : Ru(II)-polypyridine photo-sensitisers linked to tyrosine and manganese electron donors
  • 2001
  • Ingår i: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy. - 1386-1425 .- 1873-3557. ; 57:11, s. 2145-2160
  • Forskningsöversikt (refereegranskat)abstract
    • The paper describes recent advances towards the construction of functional rr mics of the oxygen evolving complex in photosystem II (PSII) that are coupled to photoinduced charge separation. Some key principles of PSII and artificial systems for light-induced charge accumulation are discussed. Systems are described where biomimetic electron donors - manganese complexes and tyrosine - have been linked to a Ru(II)-polypyridine photosensitiser. Oxidation of the donors by intramolecular electron transfer from the photo-oxidised Ru(III) complex has been studied using optical flash photolysis and EPR experiments. A step-wise electron transfer Mn-2(III,III) --> tyrosine --> Ru(III) has been demonstrated, in analogy to the reaction on the donor side of PSII Electron transfer from the tyrosine to Ru(III) was coupled to tyrosine deprotonation. This resulted in a large reorganisation energy and thus a slow reaction rate, unless the tyrosine was hydrogen bonded or already deprotonated. A comparison with analogous reactions in PSH is made. Finally, light-induced oxidation of a manganese dimer linked to a Ru(II)-photosensitiser has been observed. Preliminary results suggest the possibility of photo-oxidising manganese dimers in several steps, which is an important advancement towards water oxidation.
  •  
10.
  • Hammarstrom, L., et al. (författare)
  • Mimicking photosystem II reactions in artificial photosynthesis : Ru(II)-polypyridine photosensitisers linked to tyrosine and manganese electron donors
  • 2000
  • Ingår i: Catalysis Today. - 0920-5861 .- 1873-4308. ; 58:03-feb, s. 57-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper describes a project aiming at constructing functional mimics of the oxygen evolving complex in photosystem II, coupled to photoinduced charge separation. Biomimetic electron donors, manganese complexes and tyrosine, have been linked to a Ru(II)-polypyridine photosensitiser. Oxidation of the donors by intramolecular electron transfer from the photooxidised Ru(III) complex was demonstrated using optical flash photolysis and EPR experiments. A step-wise electron transfer Mn(III,III)-->tyrosine-->Ru(III) was demonstrated, in analogy to the reaction on the donor side of photosystem II. Electron transfer from the tyrosine to Ru(III) was coupled to tyrosine deprotonation. This resulted in a large reorganisation energy and thus a slow reaction rate, unless the tyrosine was hydrogen bonded or already deprotonated. A comparison with analogous reaction in photosystem II is made. Finally, light-induced oxidation of a manganese dimer linked to a Ru(II)-photosensitiser was observed. Preliminary results suggest the possibility of photooxidising manganese dimers in several steps, which is an important step towards water oxidation,
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy