SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akermark B) ;pers:(Abrahamsson M)"

Sökning: WFRF:(Akermark B) > Abrahamsson M

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Ping, et al. (författare)
  • Photo-induced oxidation of a dinuclear Mn-2(II,II) complex to the Mn-2(III,IV) state by inter- and intramolecular electron transfer to Ru-III tris-bipyridine
  • 2002
  • Ingår i: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 91:1, s. 159-172
  • Tidskriftsartikel (refereegranskat)abstract
    • To model the structural and functional parts of the water oxidizing complex in Photosystem 11, a dimeric manganese(II,11) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru-II(bpy)3) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru-II(bpy), in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru-III(bpy), from the Mn-2(II,II) dimer, which then attained the Mn-2(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn-2(III,IV) state. Our data indicate that oxidation from the Mn-2(II,II) state proceeds stepwise via intermediate formation of Mn-2(II,III) and Mn-2(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn-2(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn-2(III,IV), this suggests that water is essential for the formation of the Mn-2(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem 11, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.
  •  
2.
  • Abrahamsson, M. L. A., et al. (författare)
  • Ruthenium-manganese complexes for artificial photosynthesis : Factors controlling intramolecular electron transfer and excited-state quenching reactions
  • 2002
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 41:6, s. 1534-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our work toward a system mimicking the electron-transfer steps from manganese to P-680(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 X 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximate to 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium (III) electrontransfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.
  •  
3.
  •  
4.
  • Berg, K. E., et al. (författare)
  • Covalently linked ruthenium(II)-manganese(II) complexes : Distance dependence of quenching and electron transfer
  • 2001
  • Ingår i: European Journal of Inorganic Chemistry. - 1434-1948 .- 1099-1948. ; 2001:4, s. 1019-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our development of artificial models for photosystem II in green plants, a series of compounds have been prepared in which a RU(bpy)(3)(2+) photosensitizer is covalently Linked to a manganese(II) electron donor. In addition to a trispicolylamine Ligand, two other manganese Ligands, dipicolylamine and aminodiacetic acid, have been introduced in order to study Ligands that are appropriate for the construction of manganese dimers with open coordination sites for the binding of water. Coordination equilibria of the manganese ions were monitored by EPR. The interactions between the ruthenium and manganese moieties were probed by flash photolysis, cyclic voltammetry and steady-state and time-resolved emission measurements. The quenching of the Ru-II excited state by Mn-II was found to be rapid in complexes with short Ru-Mn distances. Nevertheless, each Run species could be photo-oxidized by bimolecular quenching with methylviologen, and the subsequent electron transfer from Mn-II to Ru-III could be monitored.
  •  
5.
  • Johansson, A., et al. (författare)
  • Synthesis and photophysics of one mononuclear Mn(III) and one dinuclear Mn(III,III) complex covalently linked to a ruthenium(II) tris(bipyridyl) complex
  • 2003
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 42, s. 7502-7511
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-1).
  •  
6.
  • Sun, Licheng C., et al. (författare)
  • Towards an artificial model for Photosystem II : a manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative
  • 2000
  • Ingår i: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 78:1, s. 15-22
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to model the individual electron transfer steps from the manganese cluster to the photooxidized sensitizer P-680(+) in Photosystem II (PS II) in green plants, the supramolecular complex 4 has been synthesized. In this complex, a ruthenium(II) tris-bipyridine type photosensitizer has been linked to a manganese(II) dimer via a substituted L-tyrosine, which bridges the manganese ions. The trinuclear complex 4 was characterized by electron paramagnetic resonance (EPR) and electrospray ionization mass spectrometry (ESI-MS). The excited state lifetime of the ruthenium tris-bipyridine moiety in 4 was found to be about 110 ns in acetonitrile, Using flash photolysis in the presence of an electron acceptor (methylviologen), it was demonstrated that in the supramolecular complex 4 an electron was transferred from the excited state of the ruthenium tris-bipyridine moiety to methylviologen, forming a methylviologen radical and a ruthenium(III) tris-bipyridine moiety. Next, the Ru(III) species retrieved the electron from the manganese(II/II) dimer in an intramolecular electron transfer reaction with a rate constant k(ET)>1.0X10(7) s(-1), generating a manganese(II/III) oxidation state and regenerating the ruthenium(II) photosensitizer. This is the first example of intramolecular electron transfer in a supramolecular complex, in which a manganese dimer is covalently linked to a photosensitizer via a tyrosine unit, in a process which mimics the electron transfer on the donor side of PS II.
  •  
7.
  •  
8.
  •  
9.
  • Xu, Y. H., et al. (författare)
  • Synthesis and characterization of dinuclear ruthenium complexes covalently linked to Ru-II tris-bipyridine : An approach to mimics of the donor side of photosystem II
  • 2005
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 11:24, s. 7305-7314
  • Tidskriftsartikel (refereegranskat)abstract
    • To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these compl plexes, a mixed-valent dinuclear Ru-2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru-II tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru-2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru-2(II,II) and Ru-2(II,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)(3)](2+) photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bPY)(3)](2+) moiety to the conduction band of TiO2, followed by intramolecular electron transfer from the dinuclear Ru-2(II,III) moiety to photogenerated Ru-III was observed. The resulting long-lived Ru-2(III,III) state decays on the millisecond timescale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy