SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akimoto Chizuru) "

Sökning: WFRF:(Akimoto Chizuru)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ingre, Caroline, 1977-, et al. (författare)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • Ingår i: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
2.
  • Akimoto, Chizuru, et al. (författare)
  • A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories
  • 2014
  • Ingår i: Journal of Medical Genetics. - 0022-2593 .- 1468-6244. ; 51:6, s. 419-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9-100%), and the mean specificity was 98.0% (87.5-100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.
  •  
3.
  • Akimoto, Chizuru, et al. (författare)
  • No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden
  • 2013
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Informa Healthcare. - 2167-8421. ; 14:1, s. 26-29
  • Tidskriftsartikel (refereegranskat)abstract
    • An intronic GGGGCC-hexanucleotide repeat expansion in C9ORF72 was recently identified as a major cause of amyotrophic lateral sclerosis and frontotemporal dementia. Some amyotrophic lateral sclerosis patients have signs of parkinsonism, and many parkinsonism patients develop dementia. In this study we examined if the hexanucleotide repeat expansion was present in parkinsonism patients, to clarify if there could be a relationship between the repeat expansion and disease. We studied the size of the hexanucleotide repeat expansion in a well defined population-based cohort of 135 Parkinson's disease patients and 39 patients with atypical parkinsonism and compared with 645 Swedish control subjects. We found no correlation between Parkinson's disease or atypical parkinsonism and the size of the GGGGCC repeat expansion in C9ORF72. In conclusion, this GGGGCC-repeat expansion in C9ORF72 is not a cause of parkinsonism in the Swedish population.
  •  
4.
  • Eschbach, Judith, et al. (författare)
  • PGC-1 is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis
  • 2013
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 22:17, s. 3477-3484
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating, adult-onset neurodegenerative disorder of the upper and lower motor systems. It leads to paresis, muscle wasting and inevitably to death, typically within 35 years. However, disease onset and survival vary considerably ranging in extreme cases from a few months to several decades. The genetic and environmental factors underlying this variability are of great interest as potential therapeutic targets. In ALS, men are affected more often and have an earlier age of onset than women. This gender difference is recapitulated in transgenic rodent models, but no underlying mechanism has been elucidated. Here we report that SNPs in the brain-specific promoter region of the transcriptional co-activator PGC-1, a master regulator of metabolism, modulate age of onset and survival in two large and independent ALS populations and this occurs in a strictly male-specific manner. In complementary animal studies, we show that deficiency of full-length (FL) Pgc-1 leads to a significantly earlier age of onset and a borderline shortened survival in male, but not in female ALS-transgenic mice. In the animal model, FL Pgc-1-loss is associated with reduced mRNA levels of the trophic factor Vegf-A in males, but not in females. In summary, we indentify PGC-1 as a novel and clinically relevant disease modifier of human and experimental ALS and report a sex-dependent effect of PGC-1 in this neurodegenerative disorder.
  •  
5.
  • Nordin, Angelica, et al. (författare)
  • Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD
  • 2015
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 24:11, s. 3133-3142
  • Tidskriftsartikel (refereegranskat)abstract
    • A GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood. Digitalization of the Southern blot images allowed comparison of repeat number, smear distribution and expansion band intensity between tissues and between patients. We found marked intra-individual variation of repeat number between tissues, whereas there was less variation within each tissue group. In two patients, the size variation between tissues was extreme, with repeat numbers below 100 in all studied non-neural tissues, whereas expansions in neural tissues were 20-40 times greater and in the same size range observed in neural tissues of the other 16 patients. The expansion pattern in different tissues could not distinguish between diagnostic groups and no correlation was found between expansion size in frontal lobe and occurrence of cognitive impairment. In ALS patients, a less number of repeats in the cerebellum and parietal lobe correlated with earlier age of onset and a larger number of repeats in the parietal lobe correlated with a more rapid progression. In 43 other individuals without repeat expansion in blood, we find that repeat sizes up to 15 are stable, as no size variation between blood, brain and spinal cord was found.
  •  
6.
  • Nordin, Angelica, et al. (författare)
  • Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation : a large multinational screening study
  • 2017
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - 2167-8421 .- 2167-9223. ; 18:3-4, s. 256-264
  • Tidskriftsartikel (refereegranskat)abstract
    • A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting RP-PCR data. Our objective was to determine the properties of these sequence variations with regard to prevalence, the range of variation, and effect on disease prognosis. We screened a multi-national cohort (n = 6981) for the HREM and samples with deviant RP-PCR curves were identified. The deviant samples were subsequently sequenced to determine sequence alteration. Our results show that in the USA and European cohorts (n = 6508) 10.7% carried the HREM and 3% had a sequence variant, while no HREM or sequence variants were observed in the Japanese cohort (n = 473). Sequence variations were more common on HREM alleles; however, certain population specific variants were associated with a non-expanded allele. In conclusion, we identified 38 different sequence variants, most located within the first 50 bp downstream of the HREM region. Furthermore, the presence of an HREM was found to be coupled to a lower age of onset and a shorter disease survival, while sequence variation did not have any correlation with these parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy