SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Al Ansari Nadhir) ;pers:(Yaseen Zaher Mundher)"

Sökning: WFRF:(Al Ansari Nadhir) > Yaseen Zaher Mundher

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falih, Ali Hasan, et al. (författare)
  • Comparative study on salinity removal methods: an evaluation-based stable isotopes signatures in ground and sea water
  • 2023
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • This research aims to attain the optimal method of removing the high salinity concentrations without its effect on the balance or accuracy of stable isotopes measurement of deuterium and oxygen-18 (δ18O, δ2H). Four treatment methods (i.e., distillation, vacuum distillation, electro dialysis and ion exchange) were applied for nine samples, which were obtained from different water sources (sea, groundwater, river).l Worth to notice that the samples have Electrical Conductivity (EC) ranged (1000–60,000 µs/cm). Liquid–Water Isotope Analyzer used to measure the isotope concentration of δ18O, δ2H. The research findings of the four applied methods revealed their effectiveness with various percentages (normal distillation: 92.37%; vacuum distillation: 88.31%; electro dialysis: 94.85%; ion exchange: 99.62%). In addition, the investigation was conducted a clear correspondence measurement of (δ18O, δ2H) isotopes before and after treatment. The four methods results indicated that samples with EC ranged (1000–5000 µs/cm) have no effect on stable isotope readings. Whereas, samples with EC higher than 10,000, have substantial influence on the stable isotope readings. Finally, vacuum distillation method attained the best results among the treatment methods for EC ranged (10,000–60,000 µs/cm) without affecting the isotopic content of (δ18O, δ2H). There is a clear correspondence of the stable isotopic measurements before and after treatment, for all the selected samples.
  •  
2.
  • Al-Janabi, Ahmed Mohammed Sami, et al. (författare)
  • Experimental and Numerical Analysis for Earth-Fill Dam Seepage
  • 2020
  • Ingår i: Sustainability. - Switzerland : MDPI. - 2071-1050. ; 12:6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth-fill dams are the most common types of dam and the most economical choice. However, they are more vulnerable to internal erosion and piping due to seepage problems that are the main causes of dam failure. In this study, the seepage through earth-fill dams was investigated using physical, mathematical, and numerical models. Results from the three methods revealed that both mathematical calculations using L. Casagrande solutions and the SEEP /Wnumerical model have a plotted seepage line compatible with the observed seepage line in the physical model. However,when the seepage flow intersected the downstream slope and when piping took place, the use of SEEP /Wto calculate the flow rate became useless as it was unable to calculate the volume of water flow in pipes. This was revealed by the big dierence in results between physical and numerical models in the first physical model, while the results were compatible in the second physical model when the seepage line stayed within the body of the dam and low compacted soil was adopted. Seepage analysis for seven dierent configurations of an earth-fill dam was conducted using the SEEP /W model at normal and maximum water levels to find the most appropriate configuration among them. The seven dam configurations consisted of four homogenous dams and three zoned dams. Seepage analysis revealed that if sucient quantity of silty sand soil is available around the proposed dam location, a homogenous earth-fill dam with a medium drain length of 0.5 m thickness is the best design configuration. Otherwise, a zoned earth-fill dam with a central core and 1:0.5 Horizontal to Vertical ratio (H:V) is preferred.
  •  
3.
  • Al-Janabi, Ahmed Mohammed Sami, et al. (författare)
  • Optimizing Height and Spacing of Check Dam Systems for Better Grassed Channel Infiltration Capacity
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The check dams in grassed stormwater channels enhance infiltration capacity by temporarily blocking water flow. However, the design properties of check dams, such as their height and spacing, have a significant influence on the flow regime in grassed stormwater channels and thus channel infiltration capacity. In this study, a mass-balance method was applied to a grassed channel model to investigate the effects of height and spacing of check dams on channel infiltration capacity. Moreover, an empirical infiltration model was derived by improving the modified Kostiakov model for reliable estimation of infiltration capacity of a grassed stormwater channel due to check dams from four hydraulic parameters of channels, namely, the water level, channel base width, channel side slope, and flow velocity. The result revealed that channel infiltration was increased from 12% to 20% with the increase of check dam height from 10 to 20 cm. However, the infiltration was found to decrease from 20% to 19% when a 20 cm height check dam spacing was increased from 10 to 30 m. These results indicate the effectiveness of increasing height of check dams for maximizing the infiltration capacity of grassed stormwater channels and reduction of runoff volume.
  •  
4.
  • Ehteram, Mohammad, et al. (författare)
  • Hybridization of artificial intelligence models with nature inspired optimization algorithms for lake water level prediction and uncertainty analysis
  • 2021
  • Ingår i: Alexandria Engineering Journal. - Netherlands : Elsevier. - 1110-0168 .- 2090-2670. ; 60:2, s. 2193-2208
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, an improved adaptive neuro fuzzy inference system (ANFIS) and multilayer perceptron (MLP) models are hybridized with a sunflower optimization (SO) algorithm and are introduced for lake water level simulation. The Urmia Lake water level is predicted and assessed using the potential of the proposed advanced artificial intelligence (AI) models. The sunflower optimization algorithm is implemented to find the optimal tuning parameters. The results indicated that the ANFIS-SO model with the combination of three lags of rainfall and temperature as input attributes attained the best predictability performance. The minimal values of the root mean square error were RMSE = 1.89 m and 1.92 m for the training and testing modeling phases, respectively. The worst prediction capacity was attained for the long lead (i.e., six months rainfall lag times). The uncertainty analysis showed that the ANFIS-SO model had less uncertainty based on the percentage of more responses in the confidence band and lower bandwidth. Also, different scenarios of water harvesting were investigated with the consideration of environmental restrictions and fair water allocation to stakeholders. Further, studying Urmia Lake water harvesting scenarios displayed that the 30% water harvesting scenario of the lake water improves the lake’s water level.
  •  
5.
  • Halder, Bijay, et al. (författare)
  • Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic condition is triggering human health emergencies and earth’s surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth’s health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human’s health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50–60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.
  •  
6.
  • Sharafati, Ahmad, et al. (författare)
  • Development of Advanced Computer Aid Model for Shear Strength of Concrete Slender Beam Prediction
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • High-strength concrete (HSC) is highly applicable to the construction of heavy structures. However, shear strength (Ss) determination of HSC is a crucial concern for structure designers and decision makers. The current research proposes the novel models based on the combination of adaptive neuro-fuzzy inference system (ANFIS) with several meta-heuristic optimization algorithms, including ant colony optimizer (ACO), differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO), to predict the Ss of HSC slender beam. The proposed models were constructed using several input combinations incorporating several related dimensional parameters such as effective depth of beam (d), shear span (a), maximum size of aggregate (ag), compressive strength of concrete (fc), and percentage of tension reinforcement (ρ). To assess the impact of the non-homogeneity of the dataset on the prediction result accuracy, two possible modeling scenarios, (i) non-processed (initial) dataset (NP) and (ii) pre-processed dataset (PP), are inspected by several performance indices. The modeling results demonstrated that ANFIS-PSO hybrid model attained the best prediction accuracy over the other models and for the pre-processed input parameters. Several uncertainty analyses were examined (i.e., model, variables, and data), and results indicated predicting the HSC shear strength was more sensitive to the model structure uncertainty than the input parameters.
  •  
7.
  • Tao, Hai, et al. (författare)
  • Global solar radiation prediction over North Dakota using air temperature : Development of novel hybrid intelligence model
  • 2021
  • Ingår i: Energy Reports. - Netherland : Elsevier. - 2352-4847. ; 7, s. 136-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate solar radiation (SR) prediction is one of the essential prerequisites of harvesting solar energy. The current study proposed a novel intelligence model through hybridization of Adaptive Neuro-Fuzzy Inference System (ANFIS) with two metaheuristic optimization algorithms, Salp Swarm Algorithm (SSA) and Grasshopper Optimization Algorithm (GOA) (ANFIS-muSG) for global SR prediction at different locations of North Dakota, USA. The performance of the proposed ANFIS-muSG model was compared with classical ANFIS, ANFIS-GOA, ANFIS-SSA, ANFIS-Grey Wolf Optimizer (ANFIS-GWO), ANFIS-Particle Swarm Optimization (ANFIS-PSO), ANFIS-Genetic Algorithm (ANFIS-GA) and ANFISDragonfly Algorithm (ANFIS-DA). Consistent maximum, mean and minimum air temperature data for nine years (2010–2018) were used to build the models. ANFIS-muSG showed 25.7%–54.8% higher performance accuracy in terms of root mean square error compared to other models at different locations of the study areas. The model developed in this study can be employed for SR prediction from temperature only. The results indicate the potential of hybridization of ANFIS with the metaheuristic optimization algorithms for improvement of prediction ccuracy.
  •  
8.
  • Tao, Hai, et al. (författare)
  • Groundwater level prediction using machine learning models: A comprehensive review
  • 2022
  • Ingår i: Neurocomputing. - : Elsevier. - 0925-2312 .- 1872-8286. ; 489, s. 271-308
  • Forskningsöversikt (refereegranskat)abstract
    • Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles have been published, reporting the advances in this field up to 2018. However, the existing review articles do not cover several aspects of GWL simulations using ML, which are significant for scientists and practitioners working in hydrology and water resource management. The current review article aims to provide a clear understanding of the state-of-the-art ML models implemented for GWL modeling and the milestones achieved in this domain. The review includes all of the types of ML models employed for GWL modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including the types of models, data span, time scale, input and output parameters, performance criteria used, and the best models identified. Furthermore, recommendations for possible future research directions to improve the accuracy of GWL prediction models and enhance the related knowledge are outlined.
  •  
9.
  • Tao, Hai, et al. (författare)
  • Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 175
  • Tidskriftsartikel (refereegranskat)abstract
    • This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
  •  
10.
  • Yaseen, Zaher Mundher, et al. (författare)
  • Prediction of evaporation in arid and semi-arid regions: a comparative study using different machine learning models
  • 2020
  • Ingår i: Engineering Applications of Computational Fluid Mechanics. - : Taylor & Francis. - 1994-2060 .- 1997-003X. ; 14:1, s. 70-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Evaporation, one of the fundamental components of the hydrology cycle, is differently influenced by various meteorological variables in different climatic regions. The accurate prediction of evaporation is essential for multiple water resources engineering applications, particularly in developing countries like Iraq where the meteorological stations are not sustained and operated appropriately for in situ estimations. This is where advanced methodologies such as machine learning (ML) models can make valuable contributions. In this research, evaporation is predicted at two different meteorological stations located in arid and semi-arid regions of Iraq. Four different ML models for the prediction of evaporation – the classification and regression tree (CART), the cascade correlation neural network (CCNNs), gene expression programming (GEP), and the support vector machine (SVM) – were developed and constructed using various input combinations of meteorological variables. The results reveal that the best predictions are achieved by incorporating sunshine hours, wind speed, relative humidity, rainfall, and the minimum, mean, and maximum temperatures. The SVM was found to show the best performance with wind speed, rainfall, and relative humidity as inputs at Station I (R2 = .92), and with all variables as inputs at Station II (R2 = .97). All the ML models performed well in predicting evaporation at the investigated locations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy