SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ali Mina) ;hsvcat:1"

Search: WFRF:(Ali Mina) > Natural sciences

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Harris, Ted D., et al. (author)
  • What makes a cyanobacterial bloom disappear? : A review of the abiotic and biotic cyanobacterial bloom loss factors
  • 2024
  • In: Harmful Algae. - : Elsevier. - 1568-9883 .- 1878-1470. ; 133
  • Research review (peer-reviewed)abstract
    • Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera -specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.
  •  
4.
  • Rezaei Tavabe, Kamran, et al. (author)
  • Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda Brachyura)
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12, s. 8288-8288
  • Journal article (peer-reviewed)abstract
    • Freshwater ecosystems are under multiple threats in modern times such as water extraction for human consumption, industries and agricultural activities, water contamination and habitat destruction for example. At the same time the biodiversity of these ecosystems are often poorly studied, especially in arid countries such as Iran. In this work, we study one of the ecologically important members of Iranian freshwater fauna, freshwater crab species of the genus Potamon. Here, we barcoded the different populations occurring in the country and delimited the species to allow for a better understanding of their distribution and taxonomy. In this study, we evaluated the taxonomical statues of Potamon species in Iran using genetic data. In addition, we created the first barcoding reference for Iranian freshwater crabs, which is an important resource for future environmental and conservation studies.
  •  
5.
  •  
6.
  • Elmroth, Erik, 1964-, et al. (author)
  • Self-management challenges for multi-cloud architectures
  • 2011
  • In: Towards a Service-Based Internet. - Berlin, Heidelberg : Springer Berlin/Heidelberg. - 9783642247545 - 9783642247552 ; , s. 38-49
  • Conference paper (peer-reviewed)abstract
    • Addressing the management challenges for a multitude of distributed cloud architectures, we focus on the three complementary cloud management problems of predictive elasticity, admission control, and placement (or scheduling) of virtual machines. As these problems are intrinsically intertwined we also propose an approach to optimize the overall system behavior by policy-tuning for the tools handling each of them. Moreover, in order to facilitate the execution of some of the management decisions, we also propose new algorithms for live migration of virtual machines with very high workload and/or over low-bandwidth networks, using techniques such as caching, compression, and prioritization of memory pages.
  •  
7.
  • Ghanbarikarekani, Mina, et al. (author)
  • Minimizing the stop time of private vehicles at intersections with LRT signal priority systems
  • 2020
  • In: Transportation Research Procedia. - : Elsevier BV. - 2352-1465 .- 2352-1457. ; 48:2020, s. 939-945
  • Conference paper (peer-reviewed)abstract
    • There are some strategies suggested to improve the performance of intersections and increase the demand for public vehicles by prioritizing them. To this end, several methods have been used such as Transit Signal Priority (TSP) system for Light Rail transit (LRT). LRT signal priority is a timing strategy that gives priority to LRTs at signalized intersections through changing the sequence of phases, extending green time and reducing red time at LRT's phase. In this paper, we propose a model to improve LRT signal priority systems. The developed model minimizes the green extension and red reduction of LRT's phase by estimating an optimal speed for LRTs reaching the stop line. Consequently, the priority of LRTs would be maintained while the performance of private vehicles would be improved by decreasing their stop time.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Type of publication
journal article (4)
conference paper (2)
research review (1)
Type of content
peer-reviewed (7)
Author/Editor
Alonso, Alejandro (1)
Larsson, Anders (1)
Ärnlöv, Johan, 1970- (1)
Hankey, Graeme J. (1)
Wijeratne, Tissa (1)
Wang, Kai (1)
show more...
Sahebkar, Amirhossei ... (1)
Sun, Kai (1)
Wang, Xin (1)
Hassankhani, Hadi (1)
Liu, Yang (1)
Bassat, Quique (1)
Wang, Yi (1)
Mitchell, Philip B (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Zhang, Qian (1)
Koyanagi, Ai (1)
Castro, Franz (1)
Xu, Xin (1)
Aboyans, Victor (1)
Koul, Parvaiz A. (1)
Edvardsson, David (1)
Cooper, Cyrus (1)
Weiderpass, Elisabet ... (1)
Dhimal, Meghnath (1)
Vaduganathan, Muthia ... (1)
Sheikh, Aziz (1)
Smith, Caroline (1)
Adhikari, Tara Balla ... (1)
Acharya, Pawan (1)
Gething, Peter W. (1)
Hay, Simon I. (1)
Tripathy, Srikanth P ... (1)
Schutte, Aletta E. (1)
Afshin, Ashkan (1)
Cornaby, Leslie (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Abebe, Zegeye (1)
Afarideh, Mohsen (1)
Agrawal, Sutapa (1)
Alahdab, Fares (1)
Badali, Hamid (1)
Badawi, Alaa (1)
Bensenor, Isabela M. (1)
Bernabe, Eduardo (1)
Dandona, Lalit (1)
Dandona, Rakhi (1)
Dang, Anh Kim (1)
show less...
University
Chalmers University of Technology (3)
Umeå University (2)
Uppsala University (2)
Lund University (2)
Royal Institute of Technology (1)
Södertörn University (1)
show more...
University of Borås (1)
Karolinska Institutet (1)
Högskolan Dalarna (1)
show less...
Language
English (7)
Research subject (UKÄ/SCB)
Engineering and Technology (1)
Medical and Health Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view