SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almasoudi Wejdan) "

Sökning: WFRF:(Almasoudi Wejdan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almasoudi, Wejdan, et al. (författare)
  • Co-occurrence of CLCN2-related leukoencephalopathy and SPG56
  • 2023
  • Ingår i: Clinical Parkinsonism and Related Disorders. - : Elsevier BV. - 2590-1125. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Family Report: Two rare autosomal recessive neurological disorders, leukoencephalopathy with ataxia and spastic paraplegia 56 (SPG56), were found in members of the same family. Two siblings presented with spastic paraplegia, cognitive impairment, bladder and bowel dysfunction and gait ataxia; their consanguineous parents were unaffected. Ophthalmological examination revealed chorioretinopathy. Brain MRI showed T2 hyperintensities and T1 hypointensities in the internal capsules, cerebral peduncles, pyramidal tracts and middle cerebellar peduncles. Both affected siblings were homozygous for CYP2U1 c.947A > T p.(Asp316Val), a known cause for SPG56. However, they were also homozygous for the novel variant CLCN2 c.607G > T, p.(Gly203Cys), classified as a variant of unknown significance. Testing of additional family members revealed homozygosity for both variants in an additional brother, whom we initially considered unaffected. Both male CLCN2 carriers were infertile, and review of the literature revealed one reported case with azoospermia, however the brother had no overt signs of SPG56. His testicular biopsy revealed incomplete maturation arrest in spermatogenesis; clinically we found mild memory impairment and hand tremor and MRI showed similar changes as his siblings. We consider CLCN2 c.607G > T pathogenic because of the neuroradiological and clinical findings, including azoospermia. Conclusion: Considerable workup may be required to determine the pathogenicity of novel variants, and to unambiguously associate phenotype with genotype. In very rare disorders, highly specific clinical or biomarker combinations provide sufficient evidence for a variant's pathogenicity. Phenotypic variation of monogenic disorders described in the literature may be attributed to a second co-occurring monogenic disorder, especially in consanguineous families. SPG56 may have reduced penetrance.
  •  
2.
  • Gaceb, Abderahim, et al. (författare)
  • Pericyte Microvesicles as Plasma Biomarkers Reflecting Brain Microvascular Signaling in Patients with Acute Ischemic Stroke
  • 2024
  • Ingår i: Stroke. - 0039-2499. ; 55:3, s. 558-568
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms. METHODS: Plasma samples were collected from patients with acute ischemic stroke (n=39) at 3 time points after stroke onset: 0 to 6 hours, 12 to 24 hours, and 2 to 6 days, and compared with controls (n=39). Pericyte-derived microvesicles were isolated based on cluster of differentiation 140b expression and quantified by flow cytometry. The protein content was evaluated using a proximity extension assay, and vascular signaling pathways were examined using molecular signature hallmarks and gene ontology. RESULTS: In this case-control study, patients with acute ischemic stroke showed significantly increased numbers of pericyte-derived microvesicles (median, stroke versus controls) at 12 to 24 hours (1554 versus 660 microvesicles/μL; P=0.0041) and 2 to 6 days after stroke (1346 versus 660 microvesicles/μL; P=0.0237). Their proteome revealed anti-inflammatory properties mediated via downregulation of Kirsten rat sarcoma virus and IL (interleukin)-6/JAK/STAT3 signaling at 0 to 6 hours, but proangiogenic as well as proinflammatory signals at 12 to 24 hours. Between 2 and 6 days, proteins were mainly associated with vascular remodeling as indicated by activation of Hedgehog signaling in addition to proangiogenic signals. CONCLUSIONS: We demonstrate that the plasma of patients with acute ischemic stroke reflects (1) an early and time-dependent increase of pericyte-derived microvesicles and (2) changes in the protein cargo of microvesicles over time indicating cell signaling specifically related to inflammation and vascular remodeling.
  •  
3.
  • Gorcenco, Sorina, et al. (författare)
  • New generation genetic testing entering the clinic
  • 2020
  • Ingår i: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 73, s. 72-84
  • Tidskriftsartikel (refereegranskat)abstract
    • New generation sequencing (NGS) genetic testing is a powerful diagnostic tool and is increasingly used in the clinical workup of patients, especially in unusual presentations or where a positive family history suggests heritable disease. This review addresses the NGS technologies Targeted sequencing (TS), Whole exome sequencing (WES), Whole genome sequencing (WGS), and the use of gene panels or gene lists for clinical diagnostic purposes. These methods primarily assess nucleotide sequence but can also detect copy number variants and many tandem repeat expansions, greatly simplifying diagnostic algorithms for movement disorders. Studies evaluating the efficacy of NGS in diagnosing movement disorders have reported a diagnostic yield of up to 10.1% for familial and 15.7% for early-onset PD, 11.7–37.5% for dystonia, 12.1–61.8% for ataxia/spastic paraplegia and 11.3–28% for combined movement disorders. Patient selection and stringency in the interpretation of the detected variants and genotypes affect diagnostic yield. Careful comparison of the patient's or family's disease features with the previously reported phenotype associated with the same variant or gene can avoid false-positive diagnoses, although some genes are implicated in various phenotypes. Moving from TS to WES and WGS increases the number of patients correctly diagnosed, but for many patients, a genetic cause cannot be identified today. However, new genetically defined entities are discovered at rapid pace, and genetic databases and our knowledge of genotype-phenotype correlations expand steadily. We discuss the need for clear communication of genetic results and suggest a list of aspects to consider when reporting neurogenetic disorders using NGS testing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy