SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Anders Emma) ;lar1:(gu);pers:(Landberg Göran)"

Search: WFRF:(Anders Emma) > University of Gothenburg > Landberg Göran

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berger, Karoline, 1991, et al. (author)
  • Interleukin-6 Induces Stem Cell Propagation through Liaison with the Sortilin-Progranulin Axis in Breast Cancer.
  • 2023
  • In: Cancers. - 2072-6694. ; 15:24
  • Journal article (peer-reviewed)abstract
    • Unraveling the complex network between cancer cells and their tumor microenvironment is of clinical importance, as it might allow for the identification of new targets for cancer treatment. Cytokines and growth factors secreted by various cell types present in the tumor microenvironment have the potential to affect the challenging subpopulation of cancer stem cells showing treatment-resistant properties as well as aggressive features. By using various model systems, we investigated how the breast cancer stem cell-initiating growth factor progranulin influenced the secretion of cancer-associated proteins. In monolayer cultures, progranulin induced secretion of several inflammatory-related cytokines, such as interleukin (IL)-6 and -8, in a sortilin-dependent manner. Further, IL-6 increased the cancer stem fraction similarly to progranulin in the breast cancer cell lines MCF7 and MDA-MB-231 monitored by the surrogate mammosphere-forming assay. In a cohort of 63 patient-derived scaffold cultures cultured with breast cancer cells, we observed significant correlations between IL-6 and progranulin secretion, clearly validating the association between IL-6 and progranulin also in human-based microenvironments. In conclusion, the interplay between progranulin and IL-6 highlights a dual breast cancer stem cell-promoting function via sortilin, further supporting sortilin as a highly relevant therapeutic target for aggressive breast cancer.
  •  
2.
  • Jonasson, Emma, 1987, et al. (author)
  • Identification of breast cancer stem cell related genes using functional cellular assays combined with single-cell RNA sequencing in MDA-MB-231 cells
  • 2019
  • In: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 10
  • Journal article (peer-reviewed)abstract
    • Breast cancer tumors display different cellular phenotypes. A growing body of evidence points toward a population of cancer stem cells (CSCs) that is important for metastasis and treatment resistance, although the characteristics of these cells are incomplete. We used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of CSC properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing. We clustered the cells based on their gene expression profiles and identified three subpopulations, including a CSC-like population. The cell clustering into these subpopulations overlapped with the cellular enrichment approach applied. To molecularly define these groups, we identified genes differentially expressed between the three subpopulations which could be matched to enriched gene sets. We also investigated the transition process from CSC-like cells into more differentiated cell states. In the CSC population we found 14 significantly upregulated genes. Some of these potential breast CSC markers are associated to reported stem cell properties and clinical survival data, but further experimental validation is needed to confirm their cellular functions. Detailed characterization of CSCs improve our understanding of mechanisms for tumor progression and contribute to the identification of new treatment targets. © 2019 Jonasson, Ghannoum, Persson, Karlsson, Kroneis, Larsson, Landberg and Ståhlberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
  •  
3.
  • Landberg, Göran, 1963, et al. (author)
  • Characterization of cell-free breast cancer patient-derived scaffolds using liquid chromatography-mass spectrometry/mass spectrometry data and RNA sequencing data
  • 2020
  • In: Data in Brief. - : Elsevier BV. - 2352-3409. ; 31
  • Journal article (peer-reviewed)abstract
    • Patient-derived scaffolds (PDSs) generated from primary breast cancer tumors can be used to model the tumor microenvironment in vitro . Patient-derived scaffolds are generated by repeated detergent washing, removing all cells. Here, we analyzed the protein composition of 15 decellularized PDSs using liquid chromatography-mass spectrometry/mass spectrometry. One hundred forty-three proteins were detected and their relative abundance was calculated using a reference sample generated from all PDSs. We performed heatmap analysis of all the detected proteins to display their expression patterns across different PDSs together with pathway enrichment analysis to reveal which processes that were connected to PDS protein composition. This protein dataset together with clinical information is useful to investigators studying the microenvironment of breast cancers. Further, after repopulating PDSs with either MCF7 or MDA-MB-231 cells, we quantified their gene expression profiles using RNA sequencing. These data were also compared to cells cultured in conventional 2D conditions, as well as to cells cultured as xenografts in immune-deficient mice. We investigated the overlap of genes regulated between these different culture conditions and performed pathway enrichment analysis of genes regulated by both PDS and xenograft cultures compared to 2D in both cell lines to describe common processes associated with both culture conditions. Apart from our described analyses of these systems, these data are useful when comparing different experimental model systems. Downstream data analyses and interpretations can be found in the research article "Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment" [1] . (C) 2020 The Authors. Published by Elsevier Inc.
  •  
4.
  • Landberg, Göran, et al. (author)
  • Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment
  • 2020
  • In: Biomaterials. - : Elsevier Ltd. - 0142-9612 .- 1878-5905. ; 235
  • Journal article (peer-reviewed)abstract
    • Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines. This PDS culture system induced a series of orchestrated changes in differentiation, epithelial-mesenchymal transition, stemness and proliferation of the cancer cell population, where an increased cancer stem cell pool was confirmed using functional assays. Furthermore, global gene expression profiling showed that PDS cultures were similar to xenograft cultures. Mass spectrometry analyses of cell-free PDSs identified subgroups based on their protein composition that were linked to clinical properties, including tumor grade. Finally, we observed that an induction of epithelial-mesenchymal transition-related genes in cancer cells growing on the PDSs were significantly associated with clinical disease recurrences in breast cancer patients. Patient-derived scaffolds thus mimics in vivo-like growth conditions and uncovers unique information about the malignancy-inducing properties of tumor microenvironment. © 2019 The Authors
  •  
5.
  • Dolatabadi, Soheila, et al. (author)
  • JAK–STAT signalling controls cancer stem cell properties including chemotherapy resistance in myxoid liposarcoma
  • 2019
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 145:2, s. 435-449
  • Journal article (peer-reviewed)abstract
    • Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy-resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single-cell gene expression, western blot, phospho-kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK–STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK–STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK–STAT-regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients. © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
  •  
6.
  • Jacobsson, Hanna, et al. (author)
  • Hypoxia-induced secretion stimulates breast cancer stem cell regulatory signalling pathways
  • 2019
  • In: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 13:8, s. 1693-1705
  • Journal article (peer-reviewed)abstract
    • It is well known that tumour cells are dependent on communication with the tumour microenvironment. Previously, it has been shown that hypoxia (HX) induces pronounced, diverse and direct effects on cancer stem cell (CSC) qualities in different breast cancer subtypes. Here, we describe the mechanism by which HX-induced secretion influences the spreading of CSCs. Conditioned media (CM) from estrogen receptor (ER)-α-positive hypoxic breast cancer cell cultures increased the fraction of CSCs compared to normal growth conditions, as determined using sets of CSC assays and model systems. In contrast, media from ERα-negative hypoxic cell cultures instead decreased this key subpopulation of cancer cells. Further, there was a striking overrepresentation of JAK-STAT-associated cytokines in both the ERα-positive and ERα-negative linked hypoxic responses as determined by a protein screen of the CM. JAK-STAT inhibitors and knockdown experiments further supported the hypothesis that this pathway is critical for the CSC-activating and CSC-inactivating effects induced by hypoxic secretion. We also observed that the interleukin-6-JAK2-STAT3 axis was specifically central for the ERα-negative hypoxic behaviour. Our results underline the importance of considering breast cancer subtypes in treatments targeting JAK-STAT or HX-associated processes and indicate that HX is not only a confined tumour biological event, but also influences key tumour properties in widespread normoxic microenvironments. © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
  •  
7.
  • Persson, Emma, 1989, et al. (author)
  • Patient-derived scaffolds influence secretion profiles in cancer cells mirroring clinical features and breast cancer subtypes
  • 2021
  • In: Cell Communication and Signaling. - : Springer Science and Business Media LLC. - 1478-811X. ; 19:1
  • Journal article (peer-reviewed)abstract
    • BackgroundBreast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression.MethodsA newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome.ResultsThe secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster.ConclusionPDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines.
  •  
8.
  • Svanström, Andreas, et al. (author)
  • The Effect of Hypoxic and Normoxic Culturing Conditions in Different Breast Cancer 3D Model Systems
  • 2021
  • In: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Journal article (peer-reviewed)abstract
    • The field of 3D cell cultures is currently emerging, and material development is essential in striving toward mimicking the microenvironment of a native tissue. By using the response of reporter cells to a 3D environment, a comparison between materials can be assessed, allowing optimization of material composition and microenvironment. Of particular interest, the response can be different in a normoxic and hypoxic culturing conditions, which in turn may alter the conclusion regarding a successful recreation of the microenvironment. This study aimed at determining the role of such environments to the conclusion of a better resembling cell culture model to native tissue. Here, the breast cancer cell line MCF7 was cultured in normoxic and hypoxic conditions on patient-derived scaffolds and compared at mRNA and protein levels to cells cultured on 3D printed scaffolds, Matrigel, and conventional 2D plastics. Specifically, a wide range of mRNA targets (40), identified as being regulated upon hypoxia and traditional markers for cell traits (cancer stem cells, epithelial–mesenchymal transition, pluripotency, proliferation, and differentiation), were used together with a selection of corresponding protein targets. 3D cultured cells were vastly different to 2D cultured cells in gene expression and protein levels on the majority of the selected targets in both normoxic and hypoxic culturing conditions. By comparing Matrigel and 3DPS-cultured cells to cells cultured on patient-derived scffolds, differences were also noted along all categories of mRNA targets while specifically for the GLUT3 protein. Overall, cells cultured on patient-derived scaffolds closely resembled cells cultured on 3D printed scaffolds, contrasting 2D and Matrigel-cultured cells, regardless of a normoxic or hypoxic culturing condition. Thus, these data support the use of either a normoxic or hypoxic culturing condition in assays using native tissues as a blueprint to optimize material composition. Copyright © 2021 Svanström, Rosendahl, Salerno, Jonasson, Håkansson, Ståhlberg and Landberg.
  •  
9.
  • Walsh, Claire, 1983, et al. (author)
  • The mevalonate precursor enzyme HMGCS1 is a novel marker and key mediator of cancer stem cell enrichment in luminal and basal models of breast cancer
  • 2020
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:7
  • Journal article (peer-reviewed)abstract
    • The definitive characterization of common cancer stem cell (CSCs) subpopulations in breast cancer subtypes with distinct genotypic and phenotypic features remains an ongoing challenge. In this study, we have used a non-biased genome wide screening approach to identify transcriptional networks that may be specific to the CSC subpopulations in both luminal and basal breast cancer subtypes. In depth studies of three CSC-enriched breast cancer cell lines representing various subtypes of breast cancer revealed a striking hyperactivation of the mevalonate metabolic pathway in comparison to control cells. The upregulation of metabolic networks is a key feature of tumour cells securing growth and proliferative capabilities and dysregulated mevalonate metabolism has been associated with tumour malignancy and cellular transformation in breast cancer. Furthermore, accumulating evidence suggests that Simvastatin therapy, a mevalonate pathway inhibitor, could affect breast cancer progression and reduce breast cancer recurrence. When detailing the mevalonate pathway in breast cancer using a single-cell qPCR, we identified the mevalonate precursor enzyme, HMGCS1, as a specific marker of CSC-enriched subpopulations within both luminal and basal tumour subtypes. Down-regulation of HMGCS1 also decreased the CSC fraction and function in various model systems, suggesting that HMGCS1 is essential for CSC-activities in breast cancer in general. These data was supported by strong associations between HMGCS1 expression and aggressive features, such as high tumour grade, p53 mutations as well as ER-negativity in lymph node positive breast cancer. Importantly, loss of HMGCS1 also had a much more pronounced effect on CSC-activities compared to treatment with standard doses of Simvastatin. Taken together, this study highlights HMGCS1 as a potential gatekeeper for dysregulated mevalonate metabolism important for CSC-features in both luminal and basal breast cancer subtypes. Pharmacological inhibition of HMGCS1 could therefore be a superior novel treatment approach for breast cancer patients via additional CSC blocking functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view