SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersen M.) ;pers:(Andersen Peter M. 1962)"

Sökning: WFRF:(Andersen M.) > Andersen Peter M. 1962

  • Resultat 1-10 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Rheenen, W, et al. (författare)
  • Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
  • 2021
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53:12, s. 1636-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
  •  
2.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
3.
  • Kuraszkiewicz, B., et al. (författare)
  • Potential Preventive Strategies for Amyotrophic Lateral Sclerosis
  • 2020
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 14
  • Forskningsöversikt (refereegranskat)abstract
    • It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
  •  
4.
  • Freischmidt, Axel, et al. (författare)
  • A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis
  • 2021
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 144:4, s. 1214-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.
  •  
5.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
6.
  •  
7.
  •  
8.
  • Burgunder, J-M., et al. (författare)
  • Molecular diagnosis of neurogenetic disorders : motoneuron, peripheral nerve and muscle disorders
  • 2012. - 2
  • Ingår i: European handbook of neurological management. - Oxford, UK : Wiley-Blackwell. - 9781444346268 - 9781405185349 ; , s. 97-109
  • Bokkapitel (refereegranskat)abstract
    • Objectives: The EFNS guidelines on the molecular diagnosis of motoneuron disorders, neuropathies and myopathies are designed to summarize the possibilities and limitations of molecular genetic techniques and to provide diagnostic criteria for deciding when a molecular diagnostic work-up is indicated.Search strategy: To collect data about the planning, conditions and performance of molecular diagnosis of these disorders, a literature search in various electronic databases was carried out and original papers, meta-analyses, review papers and guideline recommendations reviewed.Results: The best level of evidence for genetic testing recommendation (Level B) can be found for the disorders with specific presentations, including familial ALS, spinal and bulbar muscular atrophy, Charcot-Marie-Tooth 1A, myotonic dystrophy and Duchenne muscular dystrophy. For a number of less common disorders a precise description of the phenotype, including the use of immunological methods in the case of myopathies, is considered good clinical practice to guide molecular genetic testing.Conclusion: These guidelines are provisional and the availability of molecular-genetic epidemiological data in the future about the neurogenetic disorders under discussion in the present paper will allow improved recommendation with an increased level of evidence.
  •  
9.
  • Dilliott, Allison A., et al. (författare)
  • Clinical testing panels for ALS : global distribution, consistency, and challenges
  • 2023
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Taylor & Francis. - 2167-8421 .- 2167-9223. ; 24:5-6, s. 420-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS.Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests.Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes.Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.
  •  
10.
  • Helferich, Anika M., et al. (författare)
  • Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS
  • 2018
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 75:23, s. 4301-4319
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 89
Typ av publikation
tidskriftsartikel (78)
annan publikation (5)
doktorsavhandling (3)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Ludolph, Albert C. (21)
Marklund, Stefan L. (17)
Al-Chalabi, Ammar (16)
Weishaupt, Jochen H. (15)
van Damme, Philip (13)
visa fler...
Petri, Susanne (13)
Kuźma-Kozakiewicz, M ... (13)
van den Berg, Leonar ... (12)
de Carvalho, Mamede (12)
Hardiman, Orla (11)
Weber, Markus (10)
Chio, Adriano (10)
Forsberg, Karin (10)
Corcia, Philippe (8)
Silani, Vincenzo (8)
Veldink, Jan H. (8)
Shaw, Pamela J. (8)
van Rheenen, Wouter (8)
Brenner, David (8)
Couratier, Philippe (7)
Morrison, Karen E. (7)
Brännström, Thomas (7)
Zetterström, Per (7)
Wuolikainen, Anna (7)
Benatar, Michael (7)
Pinto, Susana (6)
Landers, John E. (6)
Iacoangeli, Alfredo (6)
Forsgren, Lars (6)
Grosskreutz, Julian (6)
Weydt, Patrick (6)
Hermann, Andreas (6)
Lulé, Dorothée (6)
van Es, Michael A (6)
Müller, Kathrin (6)
Gromicho, Marta (6)
Otto, Markus (5)
Gotkine, Marc (5)
Ticozzi, Nicola (5)
Mora Pardina, Jesus ... (5)
Shaw, Christopher E. (5)
Glass, Jonathan D. (5)
Volk, Alexander E. (5)
Ciećwierska, Katarzy ... (5)
Uttner, Ingo (5)
Nordström, Ulrika (5)
Wuu, Joanne (5)
Knehr, Antje (5)
Freischmidt, Axel (5)
visa färre...
Lärosäte
Umeå universitet (89)
Karolinska Institutet (5)
Göteborgs universitet (2)
Uppsala universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (88)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (87)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy