SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson August) ;pers:(Bikkina Srinivas)"

Sökning: WFRF:(Andersson August) > Bikkina Srinivas

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bikkina, Srinivas, et al. (författare)
  • Air quality in megacity Delhi affected by countryside biomass burning
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2:3, s. 200-205
  • Tidskriftsartikel (refereegranskat)abstract
    • South Asian megacities are strong sources of regional air pollution. Delhi is a key hotspot of health-and climate-impacting black carbon (BC) emissions, affecting environmental sustainability in densely populated northern India. Effective mitigation of BC impact is hampered by highly uncertain emission source estimates. Here, we use dual-carbon isotope fingerprints (delta C-13/Delta C-14) of BC to constrain the seasonal source variability in Delhi. These measurements show that lower BC concentrations in summer are predominantly from fossil fuel sources (similar to 83%). However, large-scale open burning of post-harvest crop residue/wood in nearby rural regions is contributing to severe haze pollution in Delhi during winter and autumn (similar to 42 +/- 17%). Hence, the common conception that megacities affect their surroundings is here amended or seasonally reversed. Therefore, to combat the severe air pollution problems in Delhi and the environmental quality of northern India, current urban efforts need to be complemented with countryside regional mitigation.
  •  
2.
  • Bikkina, Srinivas, et al. (författare)
  • Carbon isotope-constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indo-Gangetic Plain
  • 2017
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 122:9, s. 4903-4923
  • Tidskriftsartikel (refereegranskat)abstract
    • The Indo-Gangetic Plain (IGP) in northern India, Pakistan, and Bangladesh is a major source of carbonaceous aerosols in South Asia. However, poorly constrained seasonality of their sources over the IGP leads to large uncertainty in climate and health effects. Here we present a first data set for year-round radiocarbon (C-14) and stable carbon (C-13)-based source apportionment of total carbon (TC) in ambient PM10 (n = 17) collected from an urban site (Kanpur: 26.5 degrees N, 80.3 degrees E) in the IGP during January 2007 to January 2008. The year-round C-14-based fraction biomass (f(bio-TC)) estimate at Kanpur averages 777% and emphasizes an impact of biomass burning emissions (BBEs). The highest f(bio-TC) (%) is observed in fall season (October-November, 856%) followed by winter (December-February, 804%) and spring (March-May, 758%), while lowest values are found in summer (June-September, 69 +/- 2%). Since biomass/coal combustion and vehicular emissions mostly contribute to carbonaceous aerosols over the IGP, we predict C-13(TC) (C-13(pred)) over Kanpur using known C-13 source signatures and the measured C-14 value of each sample. The seasonal variability of C-13(obs)-C-13(pred) versus C-14(TC) together with air mass back trajectories and Moderate Resolution Imaging Spectroradiometer fire count data reveal that carbonaceous aerosols in winter/fall are significantly influenced by atmospheric aging (downwind transport of crop residue burning/wood combustion emissions in the northern IGP), while local sources (wheat residue combustion/vehicular emissions) dominate in spring/summer. Given the large temporal and seasonal variability in sources and emission strength of TC over the IGP, C-14-based constraints are, thus, crucial for reducing their uncertainties in carbonaceous aerosol budgets in climate models.
  •  
3.
  • Bikkina, Srinivas, et al. (författare)
  • Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India
  • 2016
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 121:9, s. 4797-4809
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (delta C-13 and Delta C-14) to characterize CA sources at a semiurban site (Hisar: 29.2 degrees N, 75.2 degrees E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4 degrees N, 79.5 degrees E, 1950 m above sea level) in northern India during winter. The Delta C-14 of total aerosol organic carbon (TOC) varied from -178% to -63% at Hisar and from -198% to -1% at Manora Peak. The absence of significant differences in the C-14-based fraction biomass of TOC between Hisar (0.81 +/- 0.03) and Manora Peak (0.82 +/- 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with d13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.
  •  
4.
  • Budhavant, Krishnakant, et al. (författare)
  • Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean
  • 2018
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 70
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents and evaluates the most comprehensive set to date of chemical, physical and optical properties of aerosols in the outflow from South Asia covering a full winter (Nov. 2014 - March 2015), here intercepted at the Indian Ocean receptor site of the Maldives Climate Observatory in Hanimaadhoo (MCOH). Cluster analysis of air-mass back trajectories for MCOH, combined with AOD and meteorological data, demonstrate that the wintertime northern Indian Ocean is strongly influenced by aerosols transported from source regions with three major wind regimes, originating from the Indo-Gangetic Plain (IGP), the Bay of Bengal (BoB) and the Arabian Sea (AS). As much as 97 +/- 3% of elemental carbon (EC) in the PM10 was also found in the fine mode (PM2.5). Other mainly anthropogenic constituents such as organic carbon (OC), non-sea-salt (nss) -K+, nss-SO42- and NH4+ were also predominantly in the fine mode (70-95%), particularly in the air masses from IGP. The combination at this large-footprint receptor observatory of consistently low OC/EC ratio (2.0 +/- 0.5), strong linear relationships between EC and OC as well as between nss-K+ and both OC and EC, suggest a predominance of primary sources, with a large biomass burning contribution. The particle number-size distributions for the air masses from IGP and BoB exhibited clear bimodal shapes within the fine fraction with distinct accumulation (0.1m0.03. Taken together, the aerosol pollution over the northern Indian Ocean in the dry season is dominated by a well-mixed long-range transported regime of the fine-mode aerosols largely from primary combustion origin.
  •  
5.
  • Budhavant, Krishnakant, et al. (författare)
  • Enhanced Light-Absorption of Black Carbon in Rainwater Compared With Aerosols Over the Northern Indian Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 125:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) aerosols affect climate, especially in high aerosol loading regions such as South Asia. A key uncertainty for the climate effects of BC is the evolution of light-absorbing properties in the atmosphere. Here, we present a year-round comparison of the mass absorption cross section (MAC; 678 nm) of BC in air (PM10) and rain, for samples collected at the Maldives Climate Observatory at Hanimaadhoo. We develop a filter-loading correction scheme for estimating BC absorption on filters used in high-volume samplers. The year-round average MAC(678) of BC in the rain is almost twice (13.3 +/- 4.2 m(2)/g) compared to the PM10 aerosol (7.2 +/- 2.6 m(2)/g). A possible explanation is the elevated ratio of organic carbon (OC) to BC observed in rain particulate matter (9.4 +/- 6.3) compared to in the aerosols (OC/BC 2.6 +/- 1.4 and water-insoluble organic carbon/BC 1.2 +/- 0.8), indicating a coating-enhancement effect. In addition to BC, we also investigated the MAC(365) of water-soluble brown carbon in PM10 (0.4 +/- 0.4 m(2)/g, at 365 nm). In contrast to BC, MAC(365)brown carbon relates to air mass history, showing higher values for samples from air originating over the South Asian landmass. Furthermore, calculated washout ratios are much lower for BC compared to OC and inorganic ions such as sulfate, implying a longer atmospheric lifetime for BC. The wet deposition flux for BC during the high loading winter was 3 times higher than during the wet summer, despite much less precipitation in the winter.
  •  
6.
  • Dasari, Sanjeev, et al. (författare)
  • Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing organic aerosols, known as brown carbon (BrC), counteract the overall cooling effect of aerosols on Earth's climate. The spatial and temporal dynamics of their light-absorbing properties are poorly constrained and unaccounted for in climate models, because of limited ambient observations. We combine carbon isotope forensics (delta C-13) with measurements of light absorption in a conceptual aging model to constrain the loss of light absorptivity (i.e., bleaching) of water-soluble BrC (WS-BrC) aerosols in one of the world's largest BrC emission regions-South Asia. On this regional scale, we find that atmospheric photochemical oxidation reduces the light absorption of WS-BrC by similar to 84% during transport over 6000 km in the Indo-Gangetic Plain, with an ambient first-order bleaching rate of 0.20 +/- 0.05 day(-1) during over-ocean transit across Bay of Bengal to an Indian Ocean receptor site. This study facilitates dynamic parameterization of WS-BrC absorption properties, thereby constraining BrC climate impact over South Asia.
  •  
7.
  • Dasari, Sanjeev, et al. (författare)
  • Source Quantification of South Asian Black Carbon Aerosols with Isotopes and Modeling
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:19, s. 11771-11779
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) aerosols perturb climate and impoverish air quality/ human health-affecting similar to 1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies. Here, we present dual-isotope-based (Delta C-14/delta C-13) fingerprinting of wintertime BC at two receptor sites of the continental outflow. Our results show a remarkable similarity in contributions of biomass and fossil combustion, both from the site capturing the highly populated highly polluted Indo-Gangetic Plain footprint (IGP; Delta C-14-f(biomass) = 50 +/- 3%) and the second site in the N. Indian Ocean representing a wider South Asian footprint (52 +/- 6%). Yet, both sites reflect distinct delta C-13-fingerprints, indicating a distinguishable contribution of C-4-biomass burning from peninsular India (PI). Tailored-model-predicted seasonaveraged BC concentrations (700 +/- 440 ng m(-3)) match observations (740 +/- 250 ng m(-3)), however, unveiling a systematically increasing model-observation bias (+19% to -53%) through winter. Inclusion of BC from open burning alone does not reconcile predictions (f(biomass) = 44 +/- 8%) with observations. Direct source-segregated comparison reveals regional offsets in anthropogenic emission fluxes in EIs, overestimated fossil-BC in the IGP, and underestimated biomass-BC in PI, which contributes to the model-observation bias. This ground-truthing pinpoints uncertainties in BC emission sources, which benefit both climate/air-quality modeling and mitigation policies in South Asia.
  •  
8.
  • Xu, Buqing, et al. (författare)
  • Large contribution of fossil-derived components to aqueous secondary organic aerosols in China
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Incomplete understanding of the sources of secondary organic aerosol (SOA) leads to large uncertainty in both air quality management and in climate change assessment. Chemical reactions occurring in the atmospheric aqueous phase represent an important source of SOA mass, yet, the effects of anthropogenic emissions on the aqueous SOA (aqSOA) are not well constrained. Here we use compound-specific dual-carbon isotopic fingerprints (δ13C and Δ14C) of dominant aqSOA molecules, such as oxalic acid, to track the precursor sources and formation mechanisms of aqSOA. Substantial stable carbon isotope fractionation of aqSOA molecules provides robust evidence for extensive aqueous-phase processing. Contrary to the paradigm that these aqSOA compounds are largely biogenic, radiocarbon-based source apportionments show that fossil precursors produced over one-half of the aqSOA molecules. Large fractions of fossil-derived aqSOA contribute substantially to the total water-soluble organic aerosol load and hence impact projections of both air quality and anthropogenic radiative forcing. Our findings reveal the importance of fossil emissions for aqSOA with effects on climate and air quality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy