SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson August) ;pers:(Du Ke)"

Sökning: WFRF:(Andersson August) > Du Ke

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, August, et al. (författare)
  • Regionally-Varying Combustion Sources of the January 2013 Severe Haze Events over Eastern China
  • 2015
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 49:4, s. 2038-2043
  • Tidskriftsartikel (refereegranskat)abstract
    • Thick haze plagued northeastern China in January 2013, strongly affecting both regional climate and human respiratory health. Here, we present dual carbon isotope constrained (Delta C-14 and delta C-13) source apportionment for combustion-derived black carbon aerosol (BC) for three key hotspot regions (megacities): North China Plain (NCP, Beijing), the Yangtze River Delta (YRD, Shanghai), and the Pearl River Delta (PRD, Guangzhou) for January 2013. BC, here quantified as elemental carbon (EC), is one of the most health-detrimental components of PM2.5 and a strong climate warming agent. The results show that these severe haze events were equally affected (similar to 30%) by biomass combustion in all three regions, whereas the sources of the dominant fossil fuel component was dramatically different between north and south. In the NCP region, coal combustion accounted for 66% (46-74%, 95% C.I.) of the EC, whereas, in the YRD and PRD regions, liquid fossil fuel combustion (e.g., traffic) stood for 46% (18-66%) and 58% (38-68%), respectively. Taken together, these findings suggest the need for a regionally-specific description of BC sources in climate models and regionally-tailored mitigation to combat severe air pollution events in East Asia.
  •  
2.
  • Chen, Bing, et al. (författare)
  • Source Forensics of Black Carbon Aerosols from China
  • 2013
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 47:16, s. 9102-9108
  • Tidskriftsartikel (refereegranskat)abstract
    • The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based bottom-up emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use top-down radiocarbon measurements of atmospheric BC from five sites including three city sites and two regional sites to determine that fossil fuel combustion produces 80 +/- 6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all 15 BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modeling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted.
  •  
3.
  • Fang, Wenzheng, et al. (författare)
  • Combined influences of sources and atmospheric bleaching on light absorption of water-soluble brown carbon aerosols
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing Brown Carbon (BrC) aerosols partially offset the overall climate-cooling of aerosols. However, the evolution of BrC light-absorption during atmospheric transport is poorly constrained. Here, we utilize optical properties, ageing-diagnostic delta C-13-BrC and transport time to deduce that the mass absorption cross-section (MACWS-BrC) is decreasing by similar to 50% during long-range oversea transport, resulting in a first-order bleaching rate of 0.24 day(-1) during the 3-day transit from continental East Asia to a south-east Yellow Sea receptor. A modern C-14 signal points to a strong inverse correlation between BrC light-absorption and age of the source material. Combining this with results for South Asia reveals a striking agreement between these two major-emission regions of rapid photobleaching of BrC with a higher intrinsic absorptivity for BrC stemming from biomass burning. The consistency of bleaching parameters constrained independently for the outflows of both East and South Asia indicates that the weakening of BrC light absorption, thus primarily related to photochemical processes rather than sources, is likely a ubiquitous phenomenon.
  •  
4.
  • Fang, Wenzheng, et al. (författare)
  • Divergent Evolution of Carbonaceous Aerosols during Dispersal of East Asian Haze
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Wintertime East Asia is plagued by severe haze episodes, characterized by large contributions of carbonaceous aerosols. However, the sources and atmospheric transformations of these major components are poorly constrained, hindering development of efficient mitigation strategies and detailed modelling of effects. Here we present dual carbon isotope (delta C-13 and Delta C-14) signatures for black carbon (BC), organic carbon (OC) and water-soluble organic carbon (WSOC) aerosols collected in urban (Beijing and BC for Shanghai) and regional receptors (e.g., Korea Climate Observatory at Gosan) during January 2014. Fossil sources (>50%) dominate BC at all sites with most stemming from coal combustion, except for Shanghai, where liquid fossil source is largest. During source-to-receptor transport, the delta C-13 fingerprint becomes enriched for WSOC but depleted for water-insoluble OC (WIOC). This reveals that the atmospheric processing of these two major pools are fundamentally different. The photochemical aging (e.g., photodissociation, photooxidation) during formation and transport can release CO2/CO or short-chain VOCs with lighter carbon, whereas the remaining WSOC becomes increasingly enriched in delta C-13. On the other hand, several processes, e.g., secondary formation, rearrangement reaction in the particle phase, and photooxidation can influence WIOC. Taken together, this study highlights high fossil contributions for all carbonaceous aerosol sub-compartments in East Asia, and suggests different transformation pathways for different classes of carbonaceous aerosols.
  •  
5.
  • Fang, Wenzheng, et al. (författare)
  • Dual-Isotope Constraints on Seasonally Resolved Source Fingerprinting of Black Carbon Aerosols in Sites of the Four Emission Hot Spot Regions of China
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 123:20, s. 11735-11747
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite much recent efforts, the emission sources of black carbon (BC) aerosols. central input to understanding and predicting environmental and climate impact. remain highly uncertain. Here we present observational delta C-13/Delta C-14-based constraints on the sources of BC aerosols over the four seasons in each of the four key hot spot emission regions of China: Beijing-Tianjin-Hebei (BTH-Wuqing; where Wuqing is the sampling location), Yangtze River Delta (YRD-Haining), Pearl River Delta (PRD-Zhongshan), and Sichuan Basin (SC-Deyang). Overall, BC loadings were highest in winter, yet elevated loadings were also observed in other seasons, for example, spring at SC-Deyang and fall at PRD-Zhongshan. Annually, the dominant BC sources were coal (50 +/- 20%) for BTH-Wuqing, liquid fossil for YRD-Haining (46 +/- 8%) and PRD-Zhongshan (48 +/- 18%), whereas liquid fossil (42 +/- 17%) and biomass burning (41 +/- 14%) equally affected SC-Deyang. There is also different but distinct seasonalities in BC sources for the different sites. As an example, for BTH-Wuqing coal burning increased from summer to winter, while summer and spring BTH-Wuqing were more influenced by liquid fossil. In contrast, for YRD-Haining, the relative importance of emission sources was more constant over the year. These quantitative observational constraints on source-seasonality of BC aerosols in receptor sites located in China's four key economic zones highlight that regulatory control on BC aerosol emissions from different fuels should consider both seasonal and regional variations. Our results also suggest that models on estimates of BC-induced climate and air quality should consider variations over both regional and seasonal scales.
  •  
6.
  • Yu, Kuangyou, et al. (författare)
  • Characterizing and sourcing ambient PM2.5 over key emission regions in China III : Carbon isotope based source apportionment of black carbon
  • 2018
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 177, s. 12-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PAD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 +/- 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 +/- 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PAD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 +/- 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy