SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andersson Björn) ;pers:(Ingri Johan)"

Search: WFRF:(Andersson Björn) > Ingri Johan

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, K, et al. (author)
  • Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood
  • 2006
  • In: Geochimica Et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 70:13, s. 3261-3274
  • Journal article (peer-reviewed)abstract
    • Variations in the physico-chemical speciation of the rare earth elements (REE) have been investigated in a subarctic boreal river during an intense spring flood event using prefiltered (< 100 mu m) samples, cross-flow (ultra)filtration (CFF), flow field-flow fractionation (FIFFF), and diffusive gradients in thin films (DGT). This combination of techniques has provided new information regarding the release and transport of the REE in river water. The colloidal material can be described in terms of two fractions dominated by carbon and iron, respectively. These two fractions, termed colloidal carrier phases, showed significant temporal changes in concentration and size distribution. Before the spring flood, colloidal carbon concentrations were low, the colloids being dominated by relatively large iron colloids. Colloidal concentrations increased sharply during the spring flood, with smaller carbon colloids dominating. Following the spring flood, colloidal concentrations decreased again, smaller carbon colloids still dominating. The REE are transported mainly in the particulate and colloidal phases. Before the spring flood, the REE composition of all measured fractions was similar to local till. During the spring flood, the REE concentrations in the colloidal and particulate fractions increased. The increase was most marked for the lighter REE, which therefore showed a strong enrichment when normalized to local till. Following the spring flood, the REE concentrations decreased again and reverted to a distribution similar to local till. These changes in the concentration and distributions of carbon iron and REE are interpreted in terms of changing hydrological flow paths in soil and bedrock which occur during the spring flood. (c) 2006 Elsevier Inc. All rights reserved.
  •  
2.
  •  
3.
  • Conrad, Sarah, et al. (author)
  • Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea
  • 2019
  • In: Biogeosciences. - : European Geosciences Union (EGU). - 1726-4170 .- 1726-4189. ; 16:6, s. 1305-1319
  • Journal article (peer-reviewed)abstract
    • Riverine Fe input is the primary Fe source for the ocean. This study is focused on the distribution of Fe along the Lena River freshwater plume in the Laptev Sea using samples from a 600 km long transect in front of the Lena River mouth. Separation of the particulate ( >  0.22 μm), colloidal (0.22 μm–1 kDa), and truly dissolved (<  1 kDa) fractions of Fe was carried out. The total Fe concentrations ranged from 0.2 to 57μM with Fe dominantly as particulate Fe. The loss of >  99% of particulate Fe and about 90% of the colloidal Fe was observed across the shelf, while the truly dissolved phase was almost constant across the Laptev Sea. Thus, the truly dissolved Fe could be an important source of bioavailable Fe for plankton in the central Arctic Ocean, together with the colloidal Fe. Fe-isotope analysis showed that the particulate phase and the sediment below the Lena River freshwater plume had negative δ56Fe values (relative to IRMM-14). The colloidal Fe phase showed negative δ56Fe values close to the river mouth (about -0.20 ‰) and positive δ56Fe values in the outermost stations (about +0.10 ‰). We suggest that the shelf zone acts as a sink for Fe particles and colloids with negative δ56Fe values, representing chemically reactive ferrihydrites. The positive δ56Fe values of the colloidal phase within the outer Lena River freshwater plume might represent Fe oxyhydroxides, which remain in the water column, and will be the predominant δ56Fe composition in the Arctic Ocean.
  •  
4.
  • Dahlqvist, Ralf, 1973, et al. (author)
  • Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers
  • 2004
  • In: Geochimica Et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 68:20, s. 4059-4075
  • Journal article (peer-reviewed)abstract
    • A considerable amount of colloidally bound Ca has been detected in water samples from Amazonian rivers and the Kalix River, a sub-arctic boreal river. Fractionation experiments using several analytical techniques and processing tools were conducted in order to elucidate the matter. Results show that on average 84% of the total Ca concentration is present as free Ca. Particulate, colloidal and complexed Ca constitute the remaining 16%, of which the colloidal fraction is significant. Ultrafiltration experiments show that the colloidal fraction in the sampled Amazonian rivers and the Kalix River range between 1% and 25%. In both the Amazonian and the Kalix rivers the technique of cross-flow ultrafiltration was used to isolate particles and colloids. The difference in concentration measured with ICP-AES and a Ca ion-selective electrode in identical samples was used to define the free Ca concentration and thus indirectly the magnitude of the particulate, colloidal and complexed fractions. Results from the Kalix and Amazonian rivers are in excellent agreement. Furthermore, the results show that the colloidal concentrations of Ca can be greatly overestimated (up to 227%) when conventional analysis and calculation of ultrafiltration data is used due to retention of free Ca ions during the ultrafiltration process. Calculation methods for colloidal matter are presented in this work, using complementary data from ISE analysis. In the Kalix River temporal changes in the fractionation of Ca were studied before, during and after a spring-flood event. Changes in the size distribution of colloidally associated Ca was studied using FlFFF (Flow Field-Flow Fractionation) coupled on-line to a HR ICP-MS. The FlFFF-HR ICP-MS fractograms clearly show the colloidal component of Ca, supporting the ultrafiltration findings. During winter conditions the size distribution of colloidally associated Ca has a concentration maximum at similar to5 to 10 nm in diameter, shifting to smaller sizes (<5 mm) during and after the spring flood. This shift in size distribution follows a change in the river during this period from ironoxyhydroxy colloids being the most important colloidal carrier phase to humic substances during and after the spring flood. WHAM and NICA-Donnan models were used to calculate the amount of colloidally bound Ca. The results similar for both models, show that on average 16% of the Ca may be associated to a colloidal phase, which is in broad agreement with the measurements. Copyright (C) 2004 Elsevier Ltd.
  •  
5.
  • Dahlqvist, Ralf, et al. (author)
  • Temporal variations of colloidal carrier phases and associated trace elements in a boreal river
  • 2007
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 71:22, s. 5339-5354
  • Journal article (peer-reviewed)abstract
    • Elemental size distributions, from truly dissolved through colloidal to particulate, have been studied in a subarctic boreal river. The measurements, carried out during 2002, ranged from winter to summer conditions, including an intense spring flood event. Results are reported for a total of 42 elements. Size distributions were characterised using a combination of cross-flow (ultra)filtration (CFF), flow field-flow fractionation (FIFFF), and diffusive gradients in thin-films (DGT). The three techniques showed similar trends, but quantitative comparisons reveal some important differences that warrant further investigation. Previous work has identified two colloidal carrier phases in fresh waters, dominated by iron and carbon, respectively. The majority of the elements studied are associated with one or both of these colloidal carrier phases. The exceptions are the alkali metals and several anions that are only very weakly associated with colloidal material, and which therefore occur mainly as truly dissolved material (< 1 kDa in molecular weight). We discuss the likely origin for the two colloidal carrier phases and consider how associated trace elements fit into the geochemical framework. The relative affinities of the elements for iron and carbon colloidal carrier phases are related to their chemistries, and are compared with earlier data from the Delsjo Creek in southern Sweden. Elemental colloidal concentrations show strong seasonal variations related to changes in the colloidal carrier phase(s) with which they associate. In particular, many elements show a strong spring maximum in colloidal concentrations associated with the strong maximum in colloidal carbon concentration during the spring flood.
  •  
6.
  • Ingri, Johan, et al. (author)
  • Fractionation of iron isotopes during estuarine mixing in Ob, Yenisey and Lena freshwater plumes
  • 2009
  • In: Geochimica et Cosmochimica Acta. - 0016-7037 .- 1872-9533. ; 73:13, Suppl. S, s. A569-
  • Journal article (other academic/artistic)abstract
    • Iron isotopes were measured in suspended matter (>0.2 µm) in the Ob, Yenisey and Lena River freshwater plumes during the International Siberian Shelf Study 2008 (ISSS-08). The δ56Fe value was around zero within the Lena River and close to the river mouth, but changed to more negative values in the outer parts of the plume. In both the Ob and Yenisey plumes suspended matter in the surface water had clearly negative values whereas samples close to the bottom showed values close to zero.It has previously been suggested that total Fe in river suspended matter (>0.2µm) in boreal regions is roughly a mixture of three phases, detrital particles (δ56Fe around zero), oxyhydroxide particles (δ56Fe positive) and C-Fe particles (δ56Fe negative). We suggest that the δ56Fe pattern observed in this study is the result of relatively rapid removal of detrital particles and Fe-oxyhydroxides, leaving a suspended fraction with negative values in the surface water in the outer parts of the freshwater plumes. Hence, during estuarine mixing of suspended particles heavy iron isotopes are deposited close to the river mouth, whereas light isotopes are exported to open ocean water.
  •  
7.
  • Ingri, Johan, et al. (author)
  • Iron isotope fractionation in river colloidal matter
  • 2006
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 245:3-4, s. 792-798
  • Journal article (peer-reviewed)abstract
    • Temporal variations in the iron isotopic composition, δ56Fe between − 0.13‰ and 0.31‰, have been measured in the suspended fraction in a Boreal river. The major mechanism behind these variations is temporal mixing between two types of particles–colloids, Fe-oxyhydroxides and Fe–C colloids. Data in this study indicate that these two types of colloids have different Fe-isotope composition. The Fe–C colloid has a negative δ56Fe value whereas the Fe-oxyhydroxide colloid is enriched in 56Fe. These two types of colloidal matter have different hydrogeochemical origin. The Fe–C colloid reaches the river during storm events when the upper sections of the soil profile (O and E horizons) are flooded by a rising water table. Colloidal Fe-oxyhydroxides reach the river via inflow and subsequent oxidation of groundwater enriched in dissolved Fe(II).
  •  
8.
  •  
9.
  • Ingri, Johan, et al. (author)
  • Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles.
  • 2000
  • In: Chemical Geology. - 0009-2541 .- 1872-6836. ; 166:1-2, s. 23-45
  • Journal article (peer-reviewed)abstract
    • Rare earth element (REE) data from weekly sampling of the filtered (<0.45 μm) and suspended particulate phase during 18 months in the Kalix River, Northern Sweden, are presented together with data on colloidal particles and the solution fraction (<3 kDa). The filtered REE concentration show large seasonal and temporal variations in the river. Lanthanum varied between approximately 300 and 2100 pM. High REE concentration in the filter-passing fraction is related to increased water discharge and there is a strong correlation between the REE concentration, organic carbon, Al and Fe. Physical erosion of detrital particles plays a minor role for the yearly transport of particulate REE in this boreal river system. The suspended particulate fraction, which is dominated by non-detrital fractions, accounted for only 35% of the yearly total transport of La in the river. Approximately 10% of the REE were transported in detrital particles during winter. At spring-flood in May, about 30% of the LREE and up to 60% of the HREE where hosted in detrital particles. Ultrafiltration of river water during spring-flood shows that colloidal particles dominate the transport of filter-passing REE. Less than 5% of the filtered REE are found in the fraction smaller than 3 kDa. The colloidal fraction shows a flat to slightly LREE enriched pattern whereas the solution fraction (<3 kDa) show an HREE enriched pattern, compared with till in the catchment. Suspended particles show a LREE enriched pattern. Data indicate that the REE are associated with two phases in the colloidal (and particulate) fraction, an organic-rich phase (with associated Al-Fe) and an Fe-rich (Fe-oxyhydroxide) inorganic phase. The Ce-anomaly in the suspended particulate fraction in the river shows systematic variations, and can be used to interpret fractionation processes of the REE during weathering and transport. There was no anomaly at maximum spring-flood but during the ice-covered period the anomaly became more and more negative. The temporal and seasonal variations of the Ce-anomaly in the suspended particulate phase reflect transport of REE-C-Al-Fe-enriched colloids from the upper section of the till (and/or from mires) to the river at storm events.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view