SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Emil) ;pers:(Andersson Daniel)"

Sökning: WFRF:(Andersson Emil) > Andersson Daniel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wallén-Mackenzie, Åsa, et al. (författare)
  • Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
  • 2009
  • Ingår i: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401 .- 0270-6474. ; 29:7, s. 2238-51
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
  •  
2.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Ghrelin increases intake of rewarding food in rodents
  • 2010
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 15:3, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.
  •  
3.
  • Salomé, Nicolas, et al. (författare)
  • Gastrectomy alters emotional reactivity in rats: neurobiological mechanisms.
  • 2011
  • Ingår i: The European journal of neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 33:9, s. 1685-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrectomy (Gsx) is associated with altered emotional function and a predisposition to depression/anxiety disorders. Here we investigated the effects of Gsx on emotional reactivity in rats and explored the underlying neurobiological mechanisms. Gsx- and sham-operated rats were exposed to behavioural tests that explore anxiety- and depression-like behaviour (open field, black and white box, elevated plus maze, social interaction, forced swim) as well as memory (object recognition). The potential neurobiological mechanisms underlying these differences were explored by measuring (i) turnover of candidate neurotransmitter systems in the nucleus accumbens, (ii) hippocampal neurogenesis by BrdU labelling or by analysis of candidate genes involved in neuronal growth and (iii) changes in mRNA expression of candidate genes in dissected hippocampal and amygdala tissue. Data from individual behavioural tests as well as from multivariate analysis revealed differing emotional reactivity between Gsx- and sham-operated rats. Gsx rats showed reduced emotional reactivity in a new environment and decreased depression-like behaviour. Accumbal serotonin and dopamine turnover were both reduced in Gsx rats. Gsx also led to a memory deficit, although hippocampal neurogenesis was unaffected. Of the many candidate genes studied by real-time RT-PCR, we highlight a Gsx-associated decrease in expression of Egr-1, a transcription factor linked to neural plasticity and cognition, in the hippocampus and amygdala. Thus, Gsx induces an alteration of emotional reactivity and a memory/cognitive deficit that is associated with reduced turnover of serotonin and dopamine in the nucleus accumbens and decreased expression of Egr-1 in the hippocampus and amygdala.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy