SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Sonia) ;pers:(Paczkowska Joanna)"

Sökning: WFRF:(Andersson Sonia) > Paczkowska Joanna

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Agneta, et al. (författare)
  • Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary
  • 2018
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier. - 0272-7714 .- 1096-0015. ; 204, s. 225-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered. (C) 2018 The Authors. Published by Elsevier Ltd.
  •  
2.
  •  
3.
  • Meunier, Cédric L., et al. (författare)
  • Allochthonous carbon is a major driver of the microbial food web : a mesocosm study simulating elevated terrestrial matter runoff
  • 2017
  • Ingår i: Marine Environmental Research. - : Elsevier. - 0141-1136 .- 1879-0291. ; 129, s. 236-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplanlcton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplanlcton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplanlcton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.
  •  
4.
  •  
5.
  • Paczkowska, Joanna, 1983-, et al. (författare)
  • Response of Coastal Phytoplankton to High Inflows of Terrestrial Matter
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change scenarios project that precipitation will increase in northern Europe, causing amplified inflows of terrestrial matter (tM) and inorganic nutrients to coastal areas. How this will affect the plankton community is poorly understood. A mesocosm experiment was carried out to investigate the influence of two levels of tM inputs on the composition, size-structure and productivity of a natural coastal phytoplankton community from the northern Baltic Sea. The tM addition caused browning of the water and decreased underwater light levels, while the concentrations of dissolved organic carbon (DOC) and inorganic nutrients increased. Microphytoplankton were promoted by tM addition, while in the controls picophytoplankton dominated the phytoplankton community. Inorganic nutrient availability was instrumental in defining the phytoplankton community composition and size-structure. As a response to tM addition, the phytoplankton increased their chlorophyll a content. This physiological adaptation helped to maintain high primary production rates at the low tM enrichment, but at the high tM load the primary production decreased as did the biomass of mesozooplankton. The ciliate biomass was high when the mesozooplankton biomass was low, indicating that a trophic cascade occurred in the system. Structural equation modeling showed that tM borne DOC promoted ciliates, while primary and bacterial production were disfavored. Thus, DOC originating from soils had an indirect negative effect on the mesozooplankton by reducing their food availability. Although, a positive correlation between heterotrophic bacteria and phytoplankton suggested coupling between phytoplankton produced carbon and heterotrophs growth. The results from our study indicate that river-borne DOC and inorganic nutrients have a large impact on the phytoplankton community, driving the system to the dominance of large diatoms. However, since river-borne humic substances cause browning of the water, phytoplankton increase their light harvesting pigments. At moderate inflow this helps to support the primary production, but at high inflows of terrestrial material the primary production will decrease. As high river inflows have been projected to be a consequence of climate change, we foresee that primary production will decrease in coastal areas in the future, and the impacts of such changes on the food web could be significant.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy