SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Susanne) ;pers:(Wang Qin)"

Sökning: WFRF:(Andersson Susanne) > Wang Qin

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Oscar, et al. (författare)
  • A performance assessment of type-II interband In0.5Ga 0.5Sb QD photodetectors
  • 2013
  • Ingår i: Infrared physics & technology. - : Elsevier BV. - 1350-4495 .- 1879-0275. ; 61, s. 319-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembled quantum-dot (QD) structures with type-II band alignment to the surrounding matrix material have been proposed as a III/V material approach to realize small-bandgap device structures suitable for photon detection and imaging in the long-wavelength infrared (LWIR) band. Here, we analyze the photoresponse of In0.5Ga0.5Sb/InAs QD photodiodes and estimate the system performance of type-II QD -based photodetectors. A review of alternative design approaches is presented and the choice of matrix material is discussed in terms of band alignment and its effect on the photoresponse. Photodiodes were fabricated consisting of 10 layers of In0.5Ga 0.5Sb QDs grown on InAs (0 0 1) substrates with metal-organic vapor-phase epitaxy (MOVPE). The photoresponse and dark current were measured in single pixel devices as a function of temperature in the range 20-230 K. The quantum efficiency shows an Arrhenius type behavior, which is attributed to hole trapping. This severely limits the detector performance at typical LWIR sensor operating temperatures (60-120 K). A device design with the matrix material InAs0.6Sb0.4 is proposed as a mean to improve the performance by reducing the barrier for hole transport. This can potentially allow type-II InGaSb QDs to be a competitive sensor material for LWIR detection.
  •  
2.
  • Gustafsson, Oscar, et al. (författare)
  • Photoluminescence photoresponse from InSb/InAs-based quantum dot structures
  • 2012
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087. ; 20:19, s. 21264-71
  • Tidskriftsartikel (refereegranskat)abstract
    • InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 μm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 μm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 μm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.
  •  
3.
  • Höglund, Linda, 1974-, et al. (författare)
  • Energy level scheme of InAs/InxGa1-xAs/GaAs quantum-dots-in-a-well infrared photodetector structures
  • 2010
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - Woodbury, NY : American Physical Society. - 1098-0121 .- 1550-235X. ; 82:3, s. 035314-
  • Tidskriftsartikel (refereegranskat)abstract
    • A thorough investigation of quantum-dots-in-a-well structures for infrared photodetector applications has been performed employing different experimental techniques. The electronic structure of self-assembled InAs quantum dots embedded in an In0.15Ga0.85As/GaAs quantum well (QW) was deduced from photoluminescence (PL) and PL excitation (PLE) spectroscopy. From polarization-dependent PL it was revealed that the quantum dots hold two electron energy levels and two heavy-hole levels. Tunnel capacitance spectroscopy confirmed an electron energy level separation of about 50 meV, and additionally, that the conduction-band ground state and excited state of the dots are twofold and fourfold degenerates, respectively. Intersubband photocurrent spectroscopy, combined with simultaneous interband pumping of the dots, revealed a dominant transition at 150 meV (8.5 mu m) between the ground state of the quantum dots and the excited state of the QW. Results from detailed full three-dimensional calculations of the electronic structure, including effects of composition intermixing and interdot interactions, confirm the experimentally unravelled energy level scheme of the dots and well.
  •  
4.
  • Höglund, Linda, 1974-, et al. (författare)
  • Quantum dots-in-a-well infrared photodetectors for long wavelength infrared detection
  • 2006
  • Ingår i: Proceedings of SPIE. - Bellingham, Wash. : SPIE - International Society for Optical Engineering. - 9780819464996 ; 6401, s. 1-640109
  • Konferensbidrag (refereegranskat)abstract
    • We report on a quantum dots-in-a-well infrared photodetector (DWELL QDIP) grown by metal organic vapor phase epitaxy. The DWELL QDIP consisted of ten stacked InAs/In0.5Ga0.85As/GaAs QD layers embedded between n-doped contact layers. The density of the QDs was about 9 × 10 10 cm-2 per QD layer. The energy level structure of the DWELL was revealed by optical measurements of interband transitions, and from a comparison with this energy level scheme the origin of the photocurrent peaks could be identified. The main intersubband transition contributing to the photocurrent was associated with the quantum dot ground state to the quantum well excited state transition. The performance of the DWELL QDIPs was evaluated regarding responsivity and dark current for temperatures between 15 K and 77 K. The photocurrent spectrum was dominated by a LWIR peak, with a peak wavelength at 8.4 μm and a full width at half maximum (FWHM) of 1.1 μm. At an operating temperature of 65 K, the peak responsivity was 30 mA/W at an applied bias of 4 V and the dark current was 1.2×10-5 A/cm2. Wavelength tuning from 8.4 μm to 9.5 μm was demonstrated, by reversing the bias of the detector.
  •  
5.
  • Höglund, Linda, et al. (författare)
  • Tuning of the detection wavelength in quantum dots-in-a-well infrared photodetectors
  • 2008
  • Ingår i: Proceedings of SPIE, 6940, Infrared Technology and Applications XXXIV, 694002. - : SPIE. - 9780819471314
  • Konferensbidrag (refereegranskat)abstract
    • In this study, bias mediated tuning of the detection wavelength within the infrared wavelength region is demonstrated for quantum dots-in-a-well (DWELL) infrared photodetectors. In DWELL structures, intersubband transitions in the conduction band occur from a discrete state in the quantum dot to a subband inthe quantum well. Compared to "conventional" quantum dot infrared photodetectors, where the transitions take place between different discrete bands in thequantum dots, new possibilities to tune the detection wavelength window are opened up, partly by varying the quantum dot energy levels and partly by adjusting the width and composition of the quantum well. In the DWELL structure used, an asymmetric positioning of the InAs quantum dot layer in a 8 nm wide In0.15Ga0.85As/GaAs QW has been applied which enables tuning of the peak detection wavelength within the long wavelength infrared (LWIR; 8 - 14 gm) region. When the applied bias was reversed, a wavelength shift from 8.5 to 9.5 mu m was observed for the peak position in the spectral response. For another DWELL structure, with a well width of 2 nm, the tuning range of the detector could be shifted from the medium wavelength infrared (MWIR; 3-5 mu m) region to the LWIR region. With small changes in the applied bias, the peak detection wavelength could be shifted from 5.1 to 8 mu m. These tuning properties ofDWELL structures could be essential for applications such as modulators and two-colour infrared detection. © (2008) COPYRIGHT SPIE--The International Society for Optical Engineering.
  •  
6.
  • Karim, Amir, et al. (författare)
  • In(Ga)Sb/InAs quantum dot based IR photodetectors with thermally activated photoresponse
  • 2013
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819494955
  • Konferensbidrag (refereegranskat)abstract
    • We report on the device characterization of In(Ga)Sb/InAs quantum dots (QDs) based photodetectors for long wave IR detectors. The detection principle of these quantum-dot infrared photodetectors (QDIPs) is based on the spatially indirect transition between the In(Ga)Sb QDs and the InAs matrix, as a result of the type-II band alignment. Such photodetectors are expected to have lower dark currents and higher operating temperatures compared to the current state of the art InSb and mercury cadmium telluride (MCT) technology. The In(Ga)Sb QD structures were grown using metal-organic vapour-phase epitaxy and explored using structural, electrical and optical characterization techniques. Material development resulted in obtaining photoluminescence up to 10 μm, which is the longest wavelength reported in this material system. We have fabricated different photovoltaic IR detectors from the developed material that show absorption up to 8 μm. Photoresponse spectra, showing In(Ga)Sb QD related absorption edge, were obtained up to 200 K. Detectors with different In(Ga)Sb QDs showing different cut-off wavelengths were investigated for photoresponse. Photoresponse in these detectors is thermally activated with different activation energies for devices with different cut-off wavelengths. Devices with longer cut-off wavelength exhibit higher activation energies. We can interpret this using the energy band diagram of the dots/matrix system for different QD sizes.
  •  
7.
  • Pettersson, Håkan, et al. (författare)
  • Quantum Dots-in-a-Well Infrared Photodetectors-Electronic Structure and Optical Properties
  • 2010
  • Ingår i: Bulletin of American Physical Society. - : American Physical Society.
  • Konferensbidrag (refereegranskat)abstract
    • Quantum dots-in-a-well (DWELL) infrared photodetectors is a new class of nanophotonic devices with the potential of significantly increasing the performance and reducing the cost of infrared detectors. Here we present a comprehensive study of DWELL photodetector structures using a variety of optical techniques (PL, PLE, and PC). Complementary tunnel capacitance measurements support the electronic structure obtained from the optical measurements. A detailed energy level scheme based on the experimental findings is presented and compared to theoretical modeling. The presented work show the importance of combining different electrical and optical techniques to obtain a consistent model of complicated quantum structures which is crucial for the development of future nanophotonic devices.
  •  
8.
  • Wang, Qin, et al. (författare)
  • Analysis of surface oxides on narrow bandgap III-V semiconductors leading towards surface leakage free IR photodetectors
  • 2012
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 8353, s. 835311-
  • Tidskriftsartikel (refereegranskat)abstract
    • Narrow bandgap semiconductors GaSb, InAs, and InSb are important building blocks for infrared photodetectors based on type-II InSb quantum dots or an InAs/GaSb strained layer superlattice. Understanding the surface chemical composition of these materials can provide valuable information that enables optimization of device surface passivation techniques leading towards surface leakage free IR photodetectors. We report on an investigation into Ga-, In-, Sb-, and As-oxides and other chemical species on the surface of untreated, dry etched and thermally treated GaSb, InAs and InSb samples by x-ray photoelectron spectroscopy. The experimental results reveal the presence of Sb- and Ga-oxides on the surfaces of the untreated and treated GaSb samples. Both Sb- and In-oxides were observed on the surface of all InSb samples, and especially the dry etched sample had thicker oxide layers. In the case of the InAs samples, not only In-and As-oxides XPS signals were obtained, but also AsCl species were found on the ICP dry etched sample. These results helped to analyze the dark current of our fabricated IR detectors.
  •  
9.
  • Wang, Qin, et al. (författare)
  • Recent developments in electroabsorption modulators at Acreo Swedish ICT
  • 2015
  • Ingår i: Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII. - : SPIE.
  • Konferensbidrag (refereegranskat)abstract
    • Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.
  •  
10.
  • Wang, Qin, et al. (författare)
  • Surface states characterization and simulation of type-II In(Ga)Sb quantum dot structures for processing optimization of LWIR detectors
  • 2013
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819494955
  • Konferensbidrag (refereegranskat)abstract
    • Quantum structures base on type-II In(Ga)Sb quantum dots (QDs) embedded in an InAs matrix were used as active material for achieving long-wavelength infrared (LWIR) photodetectors in this work. Both InAs and In(Ga)Sb are narrow band semiconductor materials and known to possess a large number of surface states, which apparently play significant impact for the detector's electrical and optical performance. These surface states are caused not only by material or device processing induced defects but also by surface dangling bonds, oxides, roughness and contaminants. To experimentally analyze the surface states of the QD structures treated by different device fabrication steps, atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. The results were used to optimize the fabrication process of the LWIR photodetectors in our ongoing project. The dark current and its temperature dependence of the fabricated IR photodetectors were characterized in temperature range 10 K to 300 K, and the experiment results were analyzed by a theoretic modeling obtained using simulation tool MEDICI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy