SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Thomas 1970) ;pers:(Markovic Nikola 1961)"

Sökning: WFRF:(Andersson Thomas 1970) > Markovic Nikola 1961

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Patrik U, 1970, et al. (författare)
  • Formation of Highly Rovibrationally Excited Ammonia from Dissociative Recombination of NH4
  • 2010
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 1:17, s. 2519-2523
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal energy distribution of ammonia formed in the dissociative recombination (DR) of NH4+ with electrons has been studied by an imaging technique at the ion storage ring CRYRING. The DR process resulted in the formation of NH3 + H (0.90 ± 0.01), with minor contributions from channels producing NH2 + H2 (0.05 ± 0.01) and NH2 + 2H (0.04 ± 0.02). The formed NH3 molecules were highly internally excited, with a mean rovibrational energy of 3.3 ± 0.4 eV, which corresponds to 70% of the energy released in the neutralization process. The internal energy distribution was semiquantitatively reproduced by ab initio direct dynamics simulations, and the calculations suggested that the NH3 molecules are highly vibrationally excited while rotational excitation is limited. The high internal excitation and the translational energy of NH3 and H will influence their subsequent reactivity, an aspect that should be taken into account when developing detailed models of the interstellar medium and ammonia-containing plasmas.
  •  
2.
  •  
3.
  • Öjekull, Jenny, 1973, et al. (författare)
  • Dissociative recombination of NH4+ and ND4+ ions : Storage ring experiments and ab initio molecular dynamics
  • 2004
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 120:16, s. 7391-7399
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociative recombination (DR) process of NH4+ and ND4+ molecular ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for DR of NH4+ and ND4+ in the collision energy range 0.001-1 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 2000 K are calculated from the experimental data. The absolute cross section for NH4+ agrees well with earlier work and is about a factor of 2 larger than the cross section for ND4+. The dissociative recombination of NH4+ is dominated by the product channels NH3+H (0.85+/-0.04) and NH2+2H (0.13+/-0.01), while the DR of ND4+ mainly results in ND3+D (0.94+/-0.03). Ab initio direct dynamics simulations, based on the assumption that the dissociation dynamics is governed by the neutral ground-state potential energy surface, suggest that the primary product formed in the DR process is NH3+H. The ejection of the H atom is direct and leaves the NH3 molecule highly vibrationally excited. A fraction of the excited ammonia molecules may subsequently undergo secondary fragmentation forming NH2+H. It is concluded that the model results are consistent with gross features of the experimental results, including the sensitivity of the branching ratio for the three-body channel NH2+2H to isotopic exchange.
  •  
4.
  • Öjekull, Jenny, 1973, et al. (författare)
  • Dissociative recombination of water cluster ions with free electrons : Cross sections and branching ratios
  • 2008
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 128:4, s. 44311-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociative recombination (DR) of water cluster ions H+(H2O)(n) (n=4-6) with ree electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). For the first time, branching ratios have been determined for the dominating product channels and absolute DR cross sections have been measured in the energy range from 0.001 to 0.7 eV. Dissociative recombination is concluded to result in extensive fragmentation for all three cluster ions, and a maximum number of heavy oxygen-containing fragments is produced with a probability close to unity. The branching ratio results agree with earlier DR studies of smaller water cluster ions where the channel nH(2)O+H has been observed to dominate and where energy transfer to internal degrees of freedom has been concluded to be highly efficient. The absolute DR cross sections for H+(H2O)(n) (n=4-6) decrease monotonically with increasing energy with an energy dependence close to E-1 in the lower part of the energy range and a faster falloff at higher energies, in agreement with the behavior of other studied heavy ions. The cross section data have been used to calculate DR rate coefficients in the temperature range of 10-2000 K. The results from storage ring experiments with water cluster ions are concluded to partly confirm the earlier results from afterglow experiments. The DR rate coefficients for H+(H2O)(n) (n=1-6) are in general somewhat lower than reported from afterglow experiments. The rate coefficient tends to increase with increasing cluster size, but not in the monotonic way that has been reported from afterglow experiments. The needs for further experimental studies and for theoretical models that can be used to predict the DR rate of polyatomic ions are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy