SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Ulrika) ;pers:(Henriksson Roger)"

Sökning: WFRF:(Andersson Ulrika) > Henriksson Roger

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Ulrika, et al. (författare)
  • A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk
  • 2010
  • Ingår i: Acta Oncologica. - : Informa Healthcare. - 0284-186X .- 1651-226X. ; 12, s. 17-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma is the most common type of adult brain tumor and glioblastoma, its most aggressive form, has a dismal prognosis. Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR, ERBB2, ERBB3, ERBB4) family, and the vascular endothelial growth factor receptor (VEGFR), play a central role in tumor progression. We investigated the genetic variants of EGFR, ERBB2, VEGFR and their ligands, EGF and VEGF on glioma and glioblastoma risk. In addition, we evaluated the association of genetic variants of a newly discovered family of genes known to interact with EGFR: LRIG2 and LRIG3 with glioma and glioblastoma risk. Methods. We analyzed 191 tag single nucleotide polymorphisms (SNPs) capturing all common genetic variation of EGF, EGFR, ERBB2, LRIG2, LRIG3, VEGF and VEGFR2 genes. Material from four case-control studies with 725 glioma patients (329 of who were glioblastoma patients) and their 1 610 controls was used. Haplotype analyses were conducted using SAS/Genetics software. Results. Fourteen of the SNPs were significantly associated with glioma risk at p< 0.05, and 17 of the SNPs were significantly associated with glioblastoma risk at p< 0.05. In addition, we found that one EGFR haplotype was related to increased glioblastoma risk at p=0.009, Odds Ratio [OR] = 1.67 (95% confidence interval (CI): 1.14, 2.45). The Bonferroni correction made all p-values non-significant. One SNP, rs4947986 next to the intron/exon boundary of exon 7 in EGFR, was validated in an independent data set of 713 glioblastoma and 2 236 controls, [OR] = 1.42 (95% CI: 1.06,1.91). Discussion. Previous studies show that regulation of the EGFR pathway plays a role in glioma progression but the present study is the first to find that certain genotypes of the EGFR gene may be related to glioblastoma risk. Further studies are required to reinvestigate these findings and evaluate the functional significance.
  •  
2.
  • Andersson, Ulrika, et al. (författare)
  • Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas
  • 2004
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 108:2, s. 135-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of epidermal growth factor receptor (EGFR, ErbB1) correlates with enhanced malignant potential of many human tumor types including glioblastoma multiforme. The significance of EGFR expression in meningiomas is, however, unclear. Reports regarding the other EGFR family members, ErbB2-4, in brain tumors are sparse. In this study, the expression of the EGFR family members was analyzed in relation to various parameters for the clinical importance of these receptors in 44 gliomas and 26 meningiomas. In gliomas, quantitative real-time reverse transcription (RT)-PCR revealed the highest EGFR mRNA expression in high-grade gliomas, while ErbB2 and ErbB3 mRNA were detected only in a few high-grade gliomas. In contrast, ErbB4 expression was most pronounced in low-grade gliomas. Immunohistochemistry showed significantly higher EGFR protein expression in high-grade gliomas compared to low-grade gliomas (P= 0.004). ErbB2 protein expression was mainly seen in high-grade gliomas. ErbB3 protein expression was low in all gliomas analyzed. ErbB4 protein expression was significantly higher in low-grade gliomas than in high-grade gliomas (P= 0.007). In meningiomas, quantitative real-time RT-PCR revealed expression of EGFR, ErbB2, and ErbB4 mRNA in the majority of the tumors. ErbB3 was detected in only one of the meningiomas analyzed. Immunohistochemistry demonstrated high ErbB2 protein expression in meningiomas. An intriguing observation in astrocytomas and oligodendrogliomas grade II, was a significantly decreased overall survival for patients with high EGFR protein expression (P= 0.04). The high ErbB4 expression in low-grade compared to high-grade gliomas might suggest that ErbB4 acts as a suppressor of malignant transformation in brain tumors, which is in line with previous studies in other tumor types.
  •  
3.
  • Andersson, Ulrika, 1963- (författare)
  • Experimental studies in brain tumours : with special regard to multidrug resistance and the ErbB-family
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Primary brain tumours, and especially the most common form malignant gliomas, usually display a pronounced resistance to other treatment modalities when surgery fails to cure. Growth factors, such as EGF and its receptor, frequently amplified and overexpressed in malignant gliomas, and factors associated with multidrug resistance have been suggested to at least partially explain the poor outcome. The aim of this thesis was to characterise factors in primary brain tumours associated with the development of resistance with focus on the epidermal growth factor receptor (ErbB) family, and multidrug resistance (MDR). Influences of irradiation on the expression and activity of P-glycoprotein (Pgp) in malignant gliomas was evaluated. The effects showed that irradiation increased the efflux activity of Pgp in rat brain vascular endothelial cells, but not in glioma cells. In the intracranial BT4C glioma model, Pgp was detected in the capillary endothelium in the tumour tissue but not in glioma cells. Expression of several factors coupled to MDR (Pgp, MRP1, LRP, and MGMT) in primary brain tumours were analysed and correlated to clinical data. In gliomas, Pgp and MRP1 were predominantly observed in capillary endothelium and in scattered tumour cells, whereas LRP occurred only in tumour cells. In meningiomas, expression of the analysed markers was demonstrated in the capillary endothelium, with a higher expression of Pgp and MRP1 in transitional compared to meningothelial meningiomas. A pronounced expression of MGMT was found independently of the histopathological grade or tumour type. Survival analysis indicated a shorter overall survival for patients suffering from low-grade gliomas with high expression of Pgp. To explore the importance of the epidermal growth factor receptor (EGFR), expression levels of the family members (EGFR, ErbB2-4) were analysed and their relations to various clinical parameters were evaluated in gliomas and meningiomas. In gliomas, the highest EGFR expression was observed in high-grade tumours, while ErbB4 expression was most pronounced in low-grade tumours. In meningiomas, expression of EGFR, ErbB2, and ErbB4 was observed in the majority of the tumours. An intriguing observation in low-grade gliomas was a significantly decreased overall survival for patients with high EGFR protein expression. The effects of different time schedules for administration of the selective EGFR inhibitor ZD1839 in relation to irradiation of glioma cells were analysed. The analyses showed a heterogeneity in the cytotoxic effects of ZD1839 between cell lines, and it was obvious that some of the cell lines showed sensitivity to ZD1839 despite no or low expression of EGFR. The study also demonstrated the importance of timing of ZD1839 administration when this agent is combined with irradiation. In conclusion, in order to enhance the efficacy of radiotherapy by various drugs in malignant gliomas it may be essential to inhibit drug efflux activity in endothelial cells and to deliver drugs in an optimal timing in relation to radiotherapy. The heterogeneity in expression of drug resistance markers, as well as the ErbB family reflects the complexity in classification of primary brain tumours, and indicates that subgroups of patients with low-grade gliomas expressing Pgp and EGFR might benefit from more aggressive and individualised treatment.
  •  
4.
  • Andersson, Ulrika, et al. (författare)
  • Heterogeneity in the expression of markers for drug resistance in brain tumors
  • 2004
  • Ingår i: Clinical Neuropathology. - 0722-5091. ; 23:1, s. 21-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain tumors, in general, display a multidrug-resistant phenotype. This study evaluated the immunohistochemical expression and distribution of P-glycoprotein (Pgp), multidrug resistance protein (MRP1), lung resistance protein (LRP) and O6 methylguanine-DNA methyltransferase (MGMT) in low- and high-grade astrocytoma, oligodendroglioma and in different subgroups of meningioma. The results revealed a marked heterogeneity in the expression and distribution among the analyzed tumors. In astrocytoma and oligodendroglioma, Pgp and MRP1 were observed in the capillary endothelium and in scattered tumor cells, whereas LRP occurred only in tumor cells. A pronounced expression of MGMT was found independent of the histopathological grade. An enhanced expression of MRP1 and LRP in astrocytoma and oligodendroglioma were more often evident in older patients (> 50 years). Survival analysis suggested a markedly decreased overall survival for patients suffering from low-grade glioma overexpressing Pgp. In meningioma, a heterogeneous expression of Pgp, MRP1, LRP and MGMT was seen with the most prominent staining localized to the capillary endothelium. Pgp was significantly more often overexpressed (p < 0.05) in transitional compared to meningothelial meningioma. The marked heterogeneity in the expression suggests that analysis of these factors can be of importance in the selection of individualized chemotherapy, regardless of tumor type.
  •  
5.
  • Andersson, Ulrika, et al. (författare)
  • MNS16A minisatellite genotypes in relation to risk of glioma and meningioma and to glioblastoma outcome.
  • 2009
  • Ingår i: International journal of cancer. Journal international du cancer. - : Wiley. - 1097-0215 .- 0020-7136. ; 125:4, s. 968-972
  • Tidskriftsartikel (refereegranskat)abstract
    • The human telomerase reverse transcriptase (hTERT) gene is upregulated in a majority of malignant tumours. A variable tandem repeat, MNS16A, has been reported to be of functional significance for hTERT expression. Published data on the clinical relevance of MNS16A variants in brain tumours have been contradictory. The present population-based study in the Nordic countries and the United Kingdom evaluated brain-tumour risk and survival in relation to MNS16A minisatellite variants in 648 glioma cases, 473 meningioma cases and 1,359 age, sex and geographically matched controls. By PCR-based genotyping all study subjects with fragments of 240 or 271 bp were judged as having short (S) alleles and subjects with 299 or 331 bp fragments as having long (L) alleles. Relative risk of glioma or meningioma was estimated with logistic regression adjusting for age, sex and country. Overall survival was analysed using Kaplan-Meier estimates and equality of survival distributions using the log-rank test and Cox proportional hazard ratios. The MNS16A genotype was not associated with risk of occurrence of glioma, glioblastoma (GBM) or meningioma. For GBM there were median survivals of 15.3, 11.0 and 10.7 months for the LL, LS and SS genotypes, respectively; the hazard ratio for having the LS genotype compared with the LL was significantly increased HR 2.44 (1.56-3.82) and having the SS genotype versus the LL was nonsignificantly increased HR 1.46 (0.81-2.61). When comparing the LL versus having one of the potentially functional variants LS and SS, the HR was 2.10 (1.41-3.1). However, functionality was not supported as there was no trend towards increasing HR with number of S alleles. Collected data from our and previous studies regarding both risk and survival for the MNS16A genotypes are contradictory and warrant further investigations.
  •  
6.
  • Andersson, Ulrika, et al. (författare)
  • Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation
  • 2002
  • Ingår i: Medical Oncology. - 1357-0560 .- 1559-131X. ; 19:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of radiotherapy on malignant glioma multidrug resistance to chemotherapy was evaluated because patients with glioma often are treated with a combination of radiotherapy and chemotherapy. Multidrug resistance gene (MDR1, mdr1a, and mdr1b) transcripts were found in human and rat glioma cell lines. P-Glycoprotein (Pgp) was immunohistochemically detected in glioma cell lines and in the rat brain vascular endothelial cell line (RBE4). A multidrug resistance pump efflux activity assay demonstrated increased calcein efflux of RBE4 endothelial cells, but not glioma cells, 2 h after irradiation and still increased 14 d after irradiation. The increased efflux was equally inhibited by verapamil with or without irradiation. In the rat intracranial glioma model (BT4C), Pgp was demonstrated in capillary endothelial cells of the tumor tissue and surrounding normal brain, but not in tumor cells. The expression of gene transcripts or Pgp was not affected by irradiation. The results indicate that long-lasting verapamil-resistant drug efflux mechanisms are activated in brain endothelial cells after irradiation. The results might explain the poor efficacy of chemotherapy following radiotherapy and contribute to consideration of new treatment strategies in the management of malignant glioma.
  •  
7.
  • Berntsson, Shala Ghaderi, et al. (författare)
  • Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas
  • 2011
  • Ingår i: Journal of Neuro-Oncology. - : Springer Science and Business Media LLC. - 0167-594X .- 1573-7373. ; 105:3, s. 531-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to explore the variation in DNA repair genes in adults with WHO grade II and III gliomas and their relationship to patient survival. We analysed a total of 1,458 tagging single-nucleotide polymorphisms (SNPs) that were selected to cover DNA repair genes, in 81 grade II and grade III gliomas samples, collected in Sweden and Denmark. The statistically significant genetic variants from the first dataset (P < 0.05) were taken forward for confirmation in a second dataset of 72 grade II and III gliomas from northern UK. In this dataset, eight gene variants mapping to five different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0.184, 95% CI 0.054-0.63, P = 0.007). We suggest a possible novel association between rs4253079 and survival in this group of patients with low-grade and anaplastic gliomas that needs confirmation in larger datasets.
  •  
8.
  • Dobbins, Sara E., et al. (författare)
  • Common variation at 10p12.31 near MLLT10 influences meningioma risk
  • 2011
  • Ingår i: Nature Genetics. - London : Nature America, Inc.. - 1061-4036 .- 1546-1718. ; 43:9, s. 825-827
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify susceptibility loci for meningioma, we conducted a genome-wide association study of 859 affected individuals (cases) and 704 controls with validation in two independent sample sets totaling 774 cases and 1,764 controls. We identified a new susceptibility locus for meningioma at 10p12.31 (MLLT10, rs11012732, odds ratio = 1.46, P(combined) = 1.88 x 10(-14)). This finding advances our understanding of the genetic basis of meningioma development.
  •  
9.
  •  
10.
  • Ghasimi, Soma, 1984- (författare)
  • Genotype-phenotype studies in brain tumors
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Meningioma and glioma are the most common primary brain tumors, but their etiologies are largely unknown. Although meningioma is usually benign, their intracranial location can lead to lethal consequences, and despite progress in surgery, radiotherapy, and chemotherapy the prognosis for patients with glioma remains poor. The only well-established environmental risk factor for meningioma and glioma is ionizing radiation. Evidence for inherited predisposition to meningioma and glioma is provided by a number of rare inherited syndromes where collectively these diseases account for only a small proportion of the twofold increased risk of brain tumors seen in first-degree relatives for meningioma and glioma patients. It is very possible that much of the excess familial risk is a consequence of co-inheritance of multiple low-risk genetic variations. With this in mind, the aims of the studies in this thesis were to discover genetic risk variants influencing the probability of acquiring the disease and to identify the association between risk variants on the tumor phenotype.To identify genetic variants influencing meningioma risk, a comprehensive tagging of the selected genes in a case-control study was performed. We identified nine risk variants inEGF, ERBB2, and LRIG2 genes. However, these findings could not be confirmed in another larger independent dataset. In addition, the study identified a correlation between LRIG2 protein expression and ER status when analyzed with different parameters. In a separate study with a larger sample of meningioma patients, the same correlation between LRIG2 and ER status was observed.To explore the potential association between reported germline risk variants and somatic genetic events, matched tumor and blood samples from glioma patients were analyzed by SNP array. The results identified correlations betweenEGFR gene variants and somatic aberrations within the EGFR locus and CDKN2A/B locus. To further study the relationship between germline risk variants and tumor phenotype, the same patient material was used and analyzed by three different techniques: SNP array, IHC, and FISH. The results revealed EGFR risk variants effecting copy number variation of the EGFR gene and the expression of the IDH1 and p53. Further comparison between different techniques such as SNP array and FISH analysis revealed the difficulty in achieving consistent results with different techniques.To summarize, the glioma studies show a link between genotype and phenotype where genetic risk variants in theEGFR gene were found to be associated with specific somatic aberrations. These associations are biologically interesting because EGFR is involved in multiple cellular processes. Additional studies of the direct functional role of these observations need to be conducted to elucidate the molecular mechanisms underlying the identified association between germline gene variants and somatic aberrations. For the meningioma studies, no significant risk variants influencing the disease were found but a correlation between LRIG2 and ER status was observed. This result suggests a potential role for the LRIG protein in the pathogenesis of meningioma, but more studies are needed to confirm this hypothesizes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (23)
doktorsavhandling (2)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Andersson, Ulrika (26)
Johansen, Christoffe ... (11)
Feychting, Maria (11)
Brännström, Thomas (11)
Ahlbom, Anders (10)
visa fler...
Melin, Beatrice S. (10)
Melin, Beatrice (9)
Chanock, Stephen J (7)
Yeager, Meredith (7)
Hartge, Patricia (7)
Sjöström, Sara (7)
Rajaraman, Preetha (7)
Wang, Zhaoming (7)
Gapstur, Susan M (6)
Stevens, Victoria L (6)
Albanes, Demetrius (6)
Giles, Graham G (6)
Visvanathan, Kala (6)
White, Emily (6)
Peters, Ulrike (6)
Severi, Gianluca (6)
Hallmans, Göran (6)
Kitahara, Cari M. (6)
Chatterjee, Nilanjan (6)
Gaziano, J Michael (6)
Zeleniuch-Jacquotte, ... (6)
McKean-Cowdin, Rober ... (6)
Wibom, Carl (6)
Rothman, Nathaniel (6)
Wang, Sophia S. (6)
Shu, Xiao-Ou (5)
Zheng, Wei (5)
Buring, Julie E. (5)
Swerdlow, Anthony (5)
Michaud, Dominique S (5)
Malmer, Beatrice (5)
Bergenheim, A Tommy (5)
Purdue, Mark P. (5)
Wolk, Alicja (4)
Johansen, C (4)
Hoover, Robert N. (4)
Le Marchand, Loïc (4)
Stampfer, Meir (4)
Bondy, Melissa (4)
Broholm, Helle (4)
Lönn, Stefan (4)
Simon, Matthias (4)
Chung, Charles C. (4)
Fraumeni, Joseph F., ... (4)
visa färre...
Lärosäte
Umeå universitet (27)
Karolinska Institutet (13)
Uppsala universitet (6)
Linköpings universitet (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy