SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Viktor 1983) ;pers:(Berntsson Thore 1947)"

Sökning: WFRF:(Andersson Viktor 1983) > Berntsson Thore 1947

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Viktor, 1983, et al. (författare)
  • Algae-based biofuel production as part of an industrial cluster
  • 2014
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 71, s. 113-124
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a study on the production of biofuels from algae cultivated in municipal wastewater in Gothenburg, Sweden. A possible biorefinery concept is studied based on two cases; Case A) combined biodiesel and biogas production, and Case B) only biogas production. The cases are compared in terms of product outputs and impact on global CO2 emissions mitigation. The area efficiency of the algae-based biofuels is also compared with other biofuel production routes. The study investigates the collaboration between an algae cultivation, biofuel production processes, a wastewater treatment plant and an industrial cluster for the purpose of utilizing material flows and industrial excess heat between the actors. This collaboration provides the opportunity to reduce the CO2 emissions from the process compared to a stand-alone operation. The results show that Case A is advantageous to Case B with respect to all studied factors. It is found that the algae-based biofuel production routes investigated in this study has higher area efficiency than other biofuel production routes. The amount of algae-based biofuel possible to produce corresponds to 31 MWfuel for Case A and 26 MWfuel in Case B.
  •  
2.
  • Andersson, Viktor, 1983, et al. (författare)
  • Efficient Utilization of Industrial Excess Heat for Post-combustion CO2 Capture: An Oil Refinery Sector Case Study
  • 2014
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 63, s. 6548-6556
  • Konferensbidrag (refereegranskat)abstract
    • A key issue in post-combustion carbon capture is the choice of absorbent. In this paper two different absorbents, monoethanolamine (MEA) and ammonia (NH3), have been modeled in Aspen Plus at different temperatures for possible implementation at an oil refinery. The focus of investigation is the possibilities of heat integration between the oil refinery and the carbon capture process and how these possibilities could change in a future situation where energy efficiency measures have been implemented.The results show that if only using excess heat from the refinery for heating of the carbon capture process, the MEA process can capture more CO2 than the NH3 process. It is shown that the configuration requiring least supplementary heat when applying carbon capture to all flue gases is MEA at 120 °C.The temperature profile of the excess heat from the refinery suits the MEA and NH3 processes differently. The NH3 process would benefit from a flat section above 100 °C to better integrate the heat needed to reduce slip, while the MEA process only needs heat at stripper temperature.
  •  
3.
  • Andersson, Viktor, 1983, et al. (författare)
  • Industrial excess heat driven post-combustion CCS: The effect of stripper temperature level
  • 2014
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 21, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of post-combustion CCS provides an opportunity for the oil refining sector to drastically decrease its CO2 emissions. Previous studies have shown that the largest cost is the heat supply to the stripper reboiler. When performing CCS at an oil refinery it could therefore prove economically beneficial to utilize the excess heat from refinery processes to meet this demand for heat. The present study investigates the heat demand in a stripper reboiler at different temperature levels from 120 degrees C down to 90 degrees C. At temperatures lower than 120 degrees C the heat demand increases, but the availability of excess heat also increases. A case study that connects heat demand results with data from an oil refinery shows that if only excess heat is utilized as a heat source, the amount of CO2 that can be separated is largest when the temperature in the stripper reboiler is 90 degrees C. If, however, CCS with a capture rate of 85% were applied to the four largest chimneys at the refinery, the external heat demand would be the lowest for the standard temperature of 120 degrees C. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
4.
  • Andersson, Viktor, 1983, et al. (författare)
  • Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment
  • 2020
  • Ingår i: International Journal of Energy Research. - : Hindawi Limited. - 1099-114X .- 0363-907X. ; 44:13, s. 10860-10877
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofuel production from algae feedstock has become a topic of interest in the recent decades since algae biomass cultivation is feasible in aquaculture and does therefore not compete with use of arable land. In the present work, hydrothermal liquefaction of both microalgae and macroalgae is evaluated for biofuel production and compared with transesterifying lipids extracted from microalgae as a benchmark process. The focus of the evaluation is on both the energy and carbon footprint performance of the processes. In addition, integration of the processes with an oil refinery has been assessed with regard to heat and material integration. It is shown that there are several potential benefits of co-locating an algae-based biorefinery at an oil refinery site and that the use of macroalgae as feedstock is more beneficial than the use of microalgae from a system energy performance perspective. Macroalgae-based hydrothermal liquefaction achieves the highest system energy efficiency of 38.6%, but has the lowest yield of liquid fuel (22.5 MJ per 100 MJalgae) with a substantial amount of solid biochar produced (28.0 MJ per 100 MJalgae). Microalgae-based hydrothermal liquefaction achieves the highest liquid biofuel yield (54.1 MJ per 100 MJalgae), achieving a system efficiency of 30.6%. Macro-algae-based hydrothermal liquefaction achieves the highest CO2 reduction potential, leading to savings of 24.5 resp 92 kt CO2eq/year for the two future energy market scenarios considered, assuming a constant feedstock supply rate of 100 MW algae, generating 184.5, 177.1 and 229.6 GWhbiochar/year, respectively. Heat integration with the oil refinery is only possible to a limited extent for the hydrothermal liquefaction process routes, whereas the lipid extraction process can benefit to a larger extent from heat integration due to the lower temperature level of the process heat demand.
  •  
5.
  • Andersson, Viktor, 1983, et al. (författare)
  • Techno-economic analysis of excess heat driven post-combustion CCS at an oil refinery
  • 2016
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 45, s. 130-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon capture and storage may, as a bridging technology, rapidly decrease CO2 emissions in the industrial sector. In this paper, a techno-economic study of a future MEA carbon capture plant implemented at a case study oil refinery is presented. Costs are calculated for six setups of carbon capture at the refinery. Excess heat from the refinery processes is used in the capture plant for regeneration of the absorption fluid, and the stripper reboiler temperature is varied to increase the extractable of excess heat. Supplementary heating is carried out with a heat pump. The number of chimneys to be included in the capture process is also varied, resulting in different CO2 concentrations and amounts of CO2 at the inlet of the capture plant. Results show that the specific cost for carbon capture increases as the amount of captured carbon increases due to the need for heat pumps. The costs are in the range of 41-57(sic)/t for the low-temperature cases (T-Reb =90 degrees C) and 39-44(sic)/t for the high-temperature cases (T-Reb = 120 degrees C).
  •  
6.
  • Andersson, Viktor, 1983, et al. (författare)
  • Temperature Dependence of Heat Integration Possibilities of an MEA Scrubber Plant at a Refinery
  • 2013
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 37, s. 7205-7213
  • Konferensbidrag (refereegranskat)abstract
    • A study has been conducted in order to investigate how the specific heat requirements in the stripper reboiler of a MEA capture plant changes with changing temperature. It was found that the increase in heat demand is dramatic when lowering the temperature, approximately 40% when the temperature changes from 120 to 90° C. Heat integration with a refinery was also studied, and showed that even if the heat demand was larger for the lower temperature the heat integration possibilities were also larger for the base case.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy