SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrade Anenisia C.) "

Sökning: WFRF:(Andrade Anenisia C.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tatsi, Christina, et al. (författare)
  • Aggrecan Mutations in Nonfamilial Short Stature and Short Stature Without Accelerated Skeletal Maturation
  • 2017
  • Ingår i: Journal of the Endocrine Society. - : Endocrine Society. - 2472-1972. ; 1:8, s. 1006-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN, the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.
  •  
2.
  • Andrade, Anenisia C., et al. (författare)
  • New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
  • 2017
  • Ingår i: Hormone Research in Paediatrics. - : S. Karger. - 1663-2818 .- 1663-2826. ; 88:1, s. 22-37
  • Forskningsöversikt (refereegranskat)abstract
    • Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
  •  
3.
  •  
4.
  • Gkourogianni, Alexandra, et al. (författare)
  • Pre- and postnatal growth failure with microcephaly due to two novel heterozygous IGF1R mutations and response to growth hormone treatment
  • 2020
  • Ingår i: Acta Paediatrica. - : Wiley-Blackwell Publishing Inc.. - 0803-5253 .- 1651-2227. ; 109:10, s. 2067-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To explore the phenotype and response to growth hormone in patients with heterozygous-mutations in the insulin-like growth factor I receptor gene (IGF1R).METHODS: Children with short-stature, microcephaly, born SGA combined with biochemical sign of IGF-I insensitivity were analyzed for IGF1R mutations or deletions using Sanger sequencing and Multiple ligation dependent probe amplification analysis.RESULTS: In two families, a novel heterozygous non-synonymous missense IGF1R variant was identified. In family 1, c.3364G>T, p.(Gly1122Cys) was found in the proband and co-segregated perfectly with the phenotype in three generations. In family 2, a de novo variant c.3530G>A, p.(Arg1177His) was detected. Both variants were rare, not present in the GnomAD database. Three individuals carrying IGF1R mutations have received rhGH treatment. The average gain in height SDS during treatment was 0.42 (range: 0.26 - 0.60) and 0.64 (range: 0.32 - 0.86) after 1 and 2 years of treatment, respectively.CONCLUSION: Our study presents two heterozygous IGF1R mutations causing pre- and postnatal growth failure and microcephaly and also indicates that individuals with heterozygous IGF1R mutations can respond to rhGH treatment. The findings highlight that sequencing of the IGF1R should be considered in children with microcephaly and short stature due to pre- and postnatal growth failure.
  •  
5.
  • Jee, Youn Hee, et al. (författare)
  • Genetics of Short Stature
  • 2017
  • Ingår i: Endocrinology and metabolism clinics of North America (Print). - : Saunders Elsevier. - 0889-8529 .- 1558-4410. ; 46:2, s. 259-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Short stature is a common and heterogeneous condition that is often genetic in etiology. For most children with genetic short stature, the specific molecular causes remain unknown; but with advances in exome/genome sequencing and bioinformatics approaches, new genetic causes of growth disorders have been identified, contributing to the understanding of the underlying molecular mechanisms of longitudinal bone growth and growth failure. Identifying new genetic causes of growth disorders has the potential to improve diagnosis, prognostic accuracy, and individualized management, and help avoid unnecessary testing for endocrine and other disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy