SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrea P) ;hsvcat:2"

Sökning: WFRF:(Andrea P) > Teknik

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
3.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
4.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
5.
  • Paolucci, F., et al. (författare)
  • Interoperable multi-domain delay-aware provisioning using Segment Routing monitoring and BGP-LS advertisement
  • 2016
  • Ingår i: ECOC 2016 42th European Conference on Optical Communication Proceedings, September 18 - 22, 2016, Düsseldorf, Germany. - : Institute of Electrical and Electronics Engineers (IEEE). - 9783800742745 ; , s. 190-192
  • Konferensbidrag (refereegranskat)abstract
    • This paper demonstrates a multi-domain SDN orchestrator using delay information to provision network services using BGP-LS and a novel monitoring system enabled by Segment Routing. Moreover, it is the first implementation and interoperability of the BGP-LS extensions for TE metrics.
  •  
6.
  • Šnidariać, Iva, et al. (författare)
  • LOFAR Deep Fields: Probing faint Galactic polarised emission in ELAIS-N1
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first deep polarimetric study of Galactic synchrotron emission at low radio frequencies. Our study is based on 21 observations of the European Large Area Infrared Space Observatory Survey-North 1 (ELAIS-N1) field using the Low-Frequency Array (LOFAR) at frequencies from 114.9 to 177.4 MHz. These data are a part of the LOFAR Two-metre Sky Survey Deep Fields Data Release 1. We used very low-resolution (4.3') Stokes QU data cubes of this release. We applied rotation measure (RM) synthesis to decompose the distribution of polarised structures in Faraday depth, and cross-correlation RM synthesis to align different observations in Faraday depth. We stacked images of about 150 h of the ELAIS-N1 observations to produce the deepest Faraday cube at low radio frequencies to date, tailored to studies of Galactic synchrotron emission and the intervening magneto-ionic interstellar medium. This Faraday cube covers ∼36 deg2 of the sky and has a noise of 27 μJy PSF-1 RMSF-1 in polarised intensity. This is an improvement in noise by a factor of approximately the square root of the number of stacked data cubes (√20), as expected, compared to the one in a single data cube based on five-to-eight-hour observations. We detect a faint component of diffuse polarised emission in the stacked cube, which was not detected previously. Additionally, we verify the reliability of the ionospheric Faraday rotation corrections estimated from the satellite-based total electron content measurements to be of ∼0.05 Cyrillic small letter GHEad m-2. We also demonstrate that diffuse polarised emission itself can be used to account for the relative ionospheric Faraday rotation corrections with respect to a reference observation.
  •  
7.
  •  
8.
  • Valencia, Luis, 1990-, et al. (författare)
  • Bio-based Micro-/Meso-/Macroporous Hybrid Foams with Ultrahigh Zeolite Loadings for Selective Capture of Carbon Dioxide
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:43, s. 40424-40431
  • Tidskriftsartikel (refereegranskat)abstract
    • Microporous (<2 nm) crystalline aluminosilicates in the form of zeolites offer a great potential as efficient adsorbents for atmospheric CO2 in the eminent battle against global warming and climate change. The processability of conventional zeolite powders is, however, poor, which limits their implementation in many applications, such as in gas filtration industrial systems. In this work, we overcome this issue through the preparation of hybrid foams using mesoporous/macroporous supporting materials based on the strong network properties of gelatin/nanocellulose, which can support ultrahigh loadings of silicalite-1, used as a model sorbent nanomaterial. We achieved up to 90 wt % of zeolite content and a microporous/mesoporous/macroporous hybrid material. The application of hybrid foams for selective CO2 sorption exhibits a linear relationship between the zeolite content and CO2 adsorption capacity and high selectivity over N2, where the gelatin/nanocellulose foam efficiently supports the zeolite crystals without apparently blocking their pores.
  •  
9.
  • Morais de Lima, Ana Paula, et al. (författare)
  • Framework for Planning and Evaluation of Nature-Based Solutions for Water in Peri-Urban Areas
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent efforts to achieve social, economic, and environmental goals related to sustainability emphasize the importance of nature-based solutions (NBS), as grey infrastructure alone is insufficient to address current challenges. The majority of frameworks proposed in the literature fail to address the full potential of NBS, neglecting long-term results, unintended consequences, co-benefits, and their contribution to achieving global environmental agreements, such as the Agenda 2030, especially for water management in a peri-urban context. Here we present an innovative framework that can be applied to both NBS project planning and evaluation for several water-based challenges, giving practitioners and researchers a tool not only to evaluate ongoing projects but also to guide new ones. The framework considers three main stages of a NBS project: (1) context assessment, (2) NBS implementation and adaptation process, and (3) NBS results. This tool has the potential to be used to evaluate whether NBS projects are aligned with sustainability dimensions through a set of adaptable sustainability indicators. The framework can also highlight how the NBS targets are related to the sustainable development goals (SGD) and contribute to catalyzing the 2030 Agenda. The framework is an important tool for water management and other NBS types.
  •  
10.
  • Fijoł, Natalia, et al. (författare)
  • 3D-printable biopolymer-based materials for water treatment : A review
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 430
  • Forskningsöversikt (refereegranskat)abstract
    • The global environmental concerns drive scientists all over the world to develop eco-friendly and sustainable alternatives to techniques and materials commonly used until now for water treatment applications. The relatively novel Additive manufacturing (AM) technology allows to process materials in a custom optimized, cost and time effective manner, while use of biobased materials minimizes the secondary pollution issue. Combining three-dimensional (3D) printing technology and biopolymer-based materials refines the water treatment industry, as it provides tailored water filtration systems easily available in the disadvantaged areas at low environmental impact and cost due to the raw materials' bio-origin and abundance. This review highlights the combination of various 3D printing techniques such as Fused deposition modelling (FDM), Direct ink wetting (DIW) and Stereolitography (SLA) with nature-derived biopolymers and biopolymerbased materials including chitosan, Polylactic acid (PLA), alginate and Cellulose acetate (CA) for their potential application within the water treatment industry with emphasis on oil separation and metal removal. Moreover, the environmental impact of the revised biopolymers is briefly discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (12)
annan publikation (1)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Mathew, Aji P. (6)
Aguilar-Sanchez, And ... (5)
Zaccarian, L (3)
Tufvesson, Fredrik (2)
Mathew, Aji P., 1971 ... (2)
Monti, Paolo (2)
visa fler...
Edoff, Marika, 1965- (2)
Johansson, Anders J. (2)
Eriksson, Anders (1)
Krause, Stefan (1)
Cornelissen, J. Hans ... (1)
Gough, Laura (1)
Berggren, Magnus (1)
Stavrinidou, Eleni (1)
Simon, Daniel (1)
Rothhaupt, Karl-Otto (1)
Hale, Sarah E. (1)
Kosten, Sarian (1)
Weigend, Maximilian (1)
Gabrielsson, Roger (1)
Ciais, Philippe (1)
Mevius, M (1)
Nilsson, Hans (1)
Yang, Sheng (1)
Farrell, Katharine N ... (1)
Horellou, Cathy, 196 ... (1)
Seibert, Jan (1)
Vomiero, Alberto (1)
Suleiman, Lina (1)
van der Werf, Guido ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Mazzaro, Raffaello (1)
Morandi, Vittorio (1)
Santolik, Ondrej (1)
Agarwal, Jessica (1)
Pinos, Andrea (1)
Marcinkevicius, Saul ... (1)
Di Baldassarre, Giul ... (1)
Van Loon, Anne F. (1)
Bracco, Andrea (1)
Lukic, Marko (1)
Li, Jing (1)
Wiklund, Martin (1)
Wieser, Martin (1)
Pereira, Laura (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (16)
Stockholms universitet (13)
Lunds universitet (8)
Chalmers tekniska högskola (6)
Uppsala universitet (3)
Luleå tekniska universitet (3)
visa fler...
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (1)
Umeå universitet (1)
Högskolan i Gävle (1)
Jönköping University (1)
Mittuniversitetet (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Samhällsvetenskap (3)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy