SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreassen Ole A.) ;mspu:(researchreview)"

Sökning: WFRF:(Andreassen Ole A.) > Forskningsöversikt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tahmasian, Masoud, et al. (författare)
  • ENIGMA-Sleep : Challenges, opportunities, and the road map
  • 2021
  • Ingår i: Journal of Sleep Research. - : Wiley. - 0962-1105 .- 1365-2869. ; 30:6
  • Forskningsöversikt (refereegranskat)abstract
    • Neuroimaging and genetics studies have advanced our understanding of the neurobiology of sleep and its disorders. However, individual studies usually have limitations to identifying consistent and reproducible effects, including modest sample sizes, heterogeneous clinical characteristics and varied methodologies. These issues call for a large-scale multi-centre effort in sleep research, in order to increase the number of samples, and harmonize the methods of data collection, preprocessing and analysis using pre-registered well-established protocols. The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium provides a powerful collaborative framework for combining datasets across individual sites. Recently, we have launched the ENIGMA-Sleep working group with the collaboration of several institutes from 15 countries to perform large-scale worldwide neuroimaging and genetics studies for better understanding the neurobiology of impaired sleep quality in population-based healthy individuals, the neural consequences of sleep deprivation, pathophysiology of sleep disorders, as well as neural correlates of sleep disturbances across various neuropsychiatric disorders. In this introductory review, we describe the details of our currently available datasets and our ongoing projects in the ENIGMA-Sleep group, and discuss both the potential challenges and opportunities of a collaborative initiative in sleep medicine.
  •  
2.
  • Haukvik, Unn Kristin, et al. (författare)
  • An exploratory model for G x E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes
  • 2010
  • Ingår i: Progress in Neuro-Psychopharmacology and Biological Psychiatry. - : Elsevier BV. - 0278-5846 .- 1878-4216. ; 34:7, s. 1259-1265
  • Forskningsöversikt (refereegranskat)abstract
    • Background Smaller hippocampal volume has repeatedly been reported in schizophrenia patients Obstetric complications (OCs) and single nucleotide polymorphism (SNP) variation in schizophrenia susceptibility genes have independently been related to hippocampal volume We investigated putative independent and interaction effects of severe hypoxia-related OCs and variation in four hypoxia-regulated schizophrenia susceptibility genes (BDNF, DTNBP1, GRM3 and NRG1) on hippocampal volume in schizophrenia patients and healthy controls. Methods Clinical assessment, structural MRI scans, and blood samples for genotyping of 32 SNPs were obtained from 54 schizophrenia patients and 53 control subjects Information on obstetric complications was collected from original birth records Results Severe OCs were related to hippocampal volume in both patients with schizophrenia and healthy control subjects Of the 32 SNPs studied, effects of severe OCs on hippocampal volume were associated with allele variation in GRM3 rs13242038, but the interaction effect was not specific for schizophrenia. SNP variation in any of the four investigated genes alone did not significantly affect hippocampal volume. Conclusions. The findings suggest a gene-environment (G x E) interaction between GRM3 gene variants and severe obstetric complications on hippocampus volume, independent of a diagnosis of schizophrenia Due to the modest sample size, the results must be considered preliminary and require replication in independent samples. (C) 2010 Elsevier Inc All rights reserved
  •  
3.
  • Johansson, Åsa, et al. (författare)
  • Precision medicine in complex diseases - : Molecular subgrouping for improved prediction and treatment stratification
  • 2023
  • Ingår i: Journal of Internal Medicine. - : John Wiley & Sons. - 1365-2796 .- 0954-6820. ; 294:4, s. 378-396
  • Forskningsöversikt (refereegranskat)abstract
    • Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
  •  
4.
  • Schalling, Martin, et al. (författare)
  • Nya rön om schizofreni kan ge ny diagnostik och behandling
  • 2015
  • Ingår i: Läkartidningen. - : Läkartidningen Förlag. - 0023-7205 .- 1652-7518. ; 112
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)abstract
    • Remarkable progress has been made in the understanding of schizophrenia in the past few years. A driving force has been genome wide association studies that have now led to the identification of over 100 vulnerability loci, implicating functions in the immune system, calcium signaling as well as dopamine and glutamate transmission. In coupling the genetic information to functional data sets from imaging and cognitive studies there is a promise of developing radically improved understanding of schizophrenia, and in some cases new therapies based on immune modulation. As we develop more knowledge and better therapies there will likely be a reduction in stigmatization that is a very real problem for those affected and their families.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy