SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreasson Ulf 1968) ;lar1:(umu)"

Sökning: WFRF:(Andreasson Ulf 1968) > Umeå universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edsbagge, Mikael, et al. (författare)
  • Alzheimer's Disease-Associated Cerebrospinal Fluid (CSF) Biomarkers do not Correlate with CSF Volumes or CSF Production Rate.
  • 2017
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 58:3, s. 821-828
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropathologically, Alzheimer's disease (AD) is characterized by accumulation of a 42 amino acid peptide called amyloid-β (Aβ42) in extracellular senile plaques together with intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles and neuronal degeneration. These changes are reflected in the cerebrospinal fluid (CSF), the volumes and production rates of which vary considerably between individuals, by reduced concentration of Aβ42, increased concentration of phosphorylated tau (P-tau) protein, and increased concentration of total tau (T-tau) protein, respectively.To examine the outstanding question if CSF concentrations of AD associated biomarkers are influenced by variations in CSF volumes, CSF production rate, and intracranial pressure in healthy individuals.CSF concentrations of Aβ42, P-tau, and T-tau, as well as a number of other AD-related CSF biomarkers were analyzed together with intracranial subarachnoid, ventricular, and spinal CSF volumes, as assessed by magnetic resonance imaging volumetric measurements, and CSF production rate in 19 cognitively normal healthy subjects (mean age 70.6, SD 3.6 years).Negative correlations were seen between the concentrations of three CSF biomarkers (albumin ratio, Aβ38, and Aβ40), and ventricular CSF volume, but apart from this finding, no significant correlations were observed.These results speak against inter-individual variations in CSF volume and production rate as important confounds in the AD biomarker research field.
  •  
2.
  • Hansson, Oskar, et al. (författare)
  • Blood-based NfL : A biomarker for differential diagnosis of parkinsonian disorder
  • 2017
  • Ingår i: Neurology. - : Lippincott Williams & Wilkins. - 0028-3878 .- 1526-632X. ; 88:10, s. 930-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. Methods: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), as well as an early disease cohort (n = 109) of patients with PD, PSP, MSA, or CBS with disease duration ≤3 years. Blood NfL concentration was measured using an ultrasensitive single molecule array (Simoa) method, and the diagnostic accuracy to distinguish PD from APD was investigated. Results: We found strong correlations between blood and CSF concentrations of NfL (ρ ≥ 0.73-0.84, p ≤ 0.001). Blood NfL was increased in patients with MSA, PSP, and CBS (i.e., all APD groups) when compared to patients with PD as well as healthy controls in all cohorts (p < 0.001). Furthermore, in the Lund cohort, blood NfL could accurately distinguish PD from APD (area under the curve [AUC] 0.91) with similar results in both the London cohort (AUC 0.85) and the early disease cohort (AUC 0.81). Conclusions: Quantification of blood NfL concentration can be used to distinguish PD from APD. Blood-based NfL might consequently be included in the diagnostic workup of patients with parkinsonian symptoms in both primary care and specialized clinics. Classification of evidence: This study provides Class III evidence that blood NfL levels discriminate between PD and APD.
  •  
3.
  • Rolandsson, Olov, et al. (författare)
  • Acute hyperglycemia induced by hyperglycemic clamp affects plasma Amyloid-β in type 2 diabetes
  • 2024
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 99:3, s. 1033-1046
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-β peptides (Aβ) play a key role in AD pathophysiology. Therefore, human studies on Aβ metabolism and T2D are warranted.Objective: The objective of this study was to examine whether acute hyperglycemia affects plasma Aβ1-40 and Aβ1-42 concentrations in individuals with T2D and matched controls.Methods: Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aβ1-40, Aβ1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aβ1-40 and Aβ1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration.Results: At baseline, Aβ1-40 and Aβ1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aβ decreased in the control group, compared to the placebo clamp (Aβ1-40: p = 0.034, Aβ1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aβ or IDE was noted in the T2D group.Conclusions: Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aβ40 and Aβ42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.
  •  
4.
  • Simrén, Joel, 1996, et al. (författare)
  • Establishment of reference values for plasma neurofilament light based on healthy individuals aged 5-90 years
  • 2022
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent development of assays that accurately quantify neurofilament light, a neuronal cytoskeleton protein, in plasma has generated a vast literature supporting that it is a sensitive, dynamic, and robust biomarker of neuroaxonal damage. As a result, efforts are now made to introduce plasma neurofilament light into clinical routine practice, making it an easily accessible complement to its cerebrospinal fluid counterpart. An increasing literature supports the use of plasma neurofilament light in differentiating neurodegenerative diseases from their non-neurodegenerative mimics and suggests it is a valuable biomarker for the evaluation of the effect of putative disease-modifying treatments (e.g. in multiple sclerosis). More contexts of use will likely emerge over the coming years. However, to assist clinical interpretation of laboratory test values, it is crucial to establish normal reference intervals. In this study, we sought to derive reliable cut-offs by pooling quantified plasma neurofilament light in neurologically healthy participants (5-90 years) from eight cohorts. A strong relationship between age and plasma neurofilament light prompted us to define the following age-partitioned reference limits (upper 95(th) percentile in each age category): 5-17 years = 7 pg/mL; 18-50 years = 10 pg/mL; 51-60 years = 15 pg/mL; 61-70 years = 20 pg/mL; 70 + years = 35 pg/mL. The established reference limits across the lifespan will aid the introduction of plasma neurofilament light into clinical routine, and thereby contribute to diagnostics and disease-monitoring in neurological practice. Simren et al. report age-stratified cut-offs for plasma neurofilament light, based on a large material of healthy individuals across the ages 5-90 years. The findings will assist clinical implementation of plasma neurofilament light in clinical routine, by simplifying interpretation of concentrations across the lifespan as neurofilament light increases with age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy