SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andresen G. B.) srt2:(2010-2014);srt2:(2011);pers:(Hayden M. E.)"

Search: WFRF:(Andresen G. B.) > (2010-2014) > (2011) > Hayden M. E.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andresen, G. B., et al. (author)
  • Autoresonant Excitation of Antiproton Plasmas
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:2, s. 025002-
  • Journal article (peer-reviewed)abstract
    • We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination
  •  
2.
  • Andresen, G. B., et al. (author)
  • Confinement of antihydrogen for 1,000 seconds
  • 2011
  • In: Nature Physics. - 1745-2473 .- 1745-2481. ; 7:7, s. 558-564
  • Journal article (peer-reviewed)abstract
    • Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.
  •  
3.
  • Andresen, G. B., et al. (author)
  • Search for trapped antihydrogen
  • 2011
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 695:1-4, s. 95-104
  • Journal article (peer-reviewed)abstract
    • We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 107 antiprotons with 1.3ï¿œ109 positrons to produce 6ï¿œ105 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
  •  
4.
  • Charlton, M, et al. (author)
  • Antiparticle sources for antihydrogen production and trapping
  • 2011
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596. ; 262, s. 012001-
  • Journal article (peer-reviewed)abstract
    • Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view